• Title/Summary/Keyword: controlled drug release

Search Result 261, Processing Time 0.025 seconds

Dissolution Profiles of Solid Dispersions Containing Poorly Water-Soluble Drugs and Solubilizing Compositions (가용화 조성물과 난용성 약물군을 함유하는 고체분산체의 용출양상)

  • Kim, Tae-Wan;Choi, Choon-Young;Cao, Qing-Ri;Kwon, Kyoung-Ae;Lee, Beom-Jin
    • Journal of Pharmaceutical Investigation
    • /
    • v.32 no.3
    • /
    • pp.191-197
    • /
    • 2002
  • Polymer based physical mixtures or solid dispersions containing solubilizing compositions[OA, tween80 and SLS] were prepared using a spray-dryer. Lovastatin(LOS), simvastatin(SIMS), aceclofenac(AFC) and cisapride(CSP) were selected as poorly water-soluble drugs. Dextrin, poly(vinylalcohol) (PVA), poly(vinylpyrrolidone)(PVP) and polyethylene glycol(PEG) were chosen as solubilizing carriers for solid dispersions. The solid dispersions containing solubilizing compositions without drug were prepared without using organic solvents or tedious changes of formulation compositions. This system could be used to quickly screen the dissolution profiles of poorly water-soluble drugs by simply mixing with drugs thereafter. In case of solid dispersion containing drug, organic solvent systems could be used to solubilize model drugs. The dissolution rates of the drugs were higher when mixed with drug and solid dispersions containing solubilizing compositions. However, solid dispersions of LOS, AFC, and CSP simultaneously containing drug and solubilizing compositions in organic solvent systems were more useful than physical mixtures of drug and solid dispersions without drug except SIMS. Based on solubilizing capability of polymer based physical mixtures in gelatin hard capsules, optimal solid dispersion system of poorly water-soluble drugs could be formulated. However, it should be noted that dissolution rate of poorly water-soluble drugs were highly dependent on drug properties, solubilizing compositions and polymeric carriers.

Controlled Release Behavior of pH-Responsive Composite Hydrogel Containing Activated Carbon

  • Yun, Ju-Mi;Im, Ji-Sun;Oh, Ae-Ri;Lee, Young-Seak;Kim, Hyung-Il
    • Carbon letters
    • /
    • v.10 no.1
    • /
    • pp.33-37
    • /
    • 2009
  • Activated carbon (AC) is one of the most effective adsorbents for organic compounds because of their extended surface area, high adsorption capacity, microporous structure and special surface reactivity. The composites of pH-sensitive hydrogel and activated carbon were prepared in order to improve the loading capacity of drug. The pH-sensitive hydrogel matrix swelled well in the basic condition to release the drug loaded in AC. The release of drug was controlled depending on both the pH due to the ionization of the carboxylic acid group and the AC due to the surface properties.

Preparation of Nanoparticles in Drug Delivery System Using Guar Derivatives and Dialysis Method

  • Na, Kun;Kim, Yu-Eun;Lee, Ki-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.1
    • /
    • pp.50-55
    • /
    • 1999
  • To develop a new form of controlled release dosage for administering for indomethacin (IND), two formulations of IND-loaded nanoparticles were designed based on polysaccharide (guar) derivatives. Nanoparticles prepared by the dialysis method were characterized with respect to morphology, size distribution, drug content, and in vitro drug release. Morphological studies by scanning electron microscopy (SEM) indicated that guar acetate (GA) nanoparticles were spherical in shape and had a smooth surface. The particle size distributions of formulation I (40mg of GA) and formulation II (80mg of GA) were shown to be $250.78\pm185.13nm$ and $718\pm145.90nm$ in distilled water ($20$^{\circ}C$), respectively. The drug loading efficiencies of nanoparticles were approximately 26% and 31% for formulations I and II, respectively. The differential scanning calorimetry (DSC) results indicated that the IND was perfectly distributed within GA nanoparticles. We also found, from the X-ray diffractometry analysis, that a decrease in the degree of crystallinity of the drug occurred in the nanoparticles. No changes between the original IND and the released IND from GA nanoparticles were detected by FT-IR. Using guar acetate, it is possible to design nanoparticles which allow the controlled release of IND over an extended period of time.

  • PDF

Stereocomplex Poly(lactic acid) Discoidal Microparticles for Sustained Drug Release (약물지연방출을 위한 스테레오컴플렉스 PLA 원반형 마이크로입자)

  • Park, Chaewon;Park, Sanghyo;Kim, Woo Cheol;Key, Jaehong
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.1
    • /
    • pp.62-66
    • /
    • 2020
  • Controlled drug release is important for effective treatment of cancer. Poly(DL-lactide-co-glycolide) acid (PLGA) is a Food and Drug Administration (FDA) approved polymer and have been extensively studied as drug delivery carriers with biodegradable and biocompatible properties. However, PLGA drug delivery carriers are limited due to the initial burst release of drug. Certain drugs require an early rapid release, but in many cases the initial rapid release can be inefficient, reducing therapeutic effects and also increasing side effects. Therefore, sustained release is important for effective treatment. Poly Lactic Acid stereo complex (PLA SC) is resistant to hydrolysis and has high stability in aqueous solutions. Therefore, in this work, PLGA based discoidal polymeric particles are modified by Poly Lactic Acid stereocomplex (PLAsc DPPs). PLAsc DPPs are 3 ㎛ in diameter, also showing a relatively sustained release profile. Fluorescein 5(6)-isothiocyanate (FITC) released from PLAsc DPPs was continuously observed until 38 days, which showed the initial release of FITC from PLAsc DPPs was about 3.9-fold reduced as compared to PLGA based DPPs at 1 hour.

Controlled Release Behavior of Temperature Responsive Composite Hydrogel Containing Activated Carbon

  • Yun, Ju-Mi;Im, Ji-Sun;Jin, Dong-Hwee;Lee, Young-Seak;Kim, Hyung-Il
    • Carbon letters
    • /
    • v.9 no.4
    • /
    • pp.283-288
    • /
    • 2008
  • The composites of temperature-sensitive hydrogel and activated carbons were prepared in order to improve both the mechanical strength of hydrogel matrix and the loading capacity of drug in a hydrogel drug delivery system. The swelling of composite hydrogel was varied depending on the temperature. Both the swelling and the release behavior of the composite hydrogel were varied depending on the kind of activated carbon. The release behavior showed the high efficiency which is important for practical applications.

Swelling Controlled Delivery of Antibiotic from a Hydrophilic Macromolecular Matrix with Hydrophobic Moieties

  • Shukla, Sandeep;Bajpai, Anil Kumar;Bajpai, Jaya
    • Macromolecular Research
    • /
    • v.11 no.4
    • /
    • pp.273-282
    • /
    • 2003
  • A hydrophilic macromolecular network containing hydrophobic moieties has been prepared by free radical copolymerization of acrylamide and styrene in the presence of poly(vinyl alcohol) (PVA) and its potential as controlled drug delivery carrier was evaluated with tetracycline as a model antibiotic drug. The amount of drug was assayed spectrophotometrically. The network was characterized by optical microscopy, infra-red spectroscopy and structural parameters such as average molecular weight between cross1inks ($M_c$), cross1ink density (q) and number of elastically effective chains ($V_e$) were evaluated. It was found that with increasing concentration of PVA, ST and MBA in the hydrogel, the release rate initially increases but after definite concentrations of the above components the release rate falls. In the case of AM, release rate constantly decreases with increasing AM concentration in the hydrogel.

Effect of Surfactants on the Controlled Release of Bupivacaine HCl from Biodegradable Microfluidic Devices (생분해성 마이크로 유체 약물전달장치의 Bupivacaine HCl 전달특성에 대한 계면활성제의 영향)

  • Yang, Sung-Yeun;Lee, Kang-Ju;Ryu, Won-Hyoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.545-551
    • /
    • 2012
  • We investigated the diffusive transport of bupivacaine HCl through the microchannels of microfluidic drug delivery devices. In the biodegradable microfluidic drug delivery devices developed in this research, the drug release rate can be controlled by simply modulating the geometrical parameters of the microchannels, such as the length, number, and cross-sectional area of the microchannels, when the microchannels are used as paths for drug release. However, the hydrophobic nature of a biodegradable polymer, 85/15 poly(lactic-co-glycolic acid), hinders the infiltration of a release medium (phosphate-buffered saline) through the microchannels into the reservoir of a device that contains bupivacaine HCl, at the early stage of drug release. This can have an adverse effect on the early stage release of local analgesic compounds from the device. In this study, microfluidic channels were surface-treated with surfactants such as PEG600 and Tween80, and the effects of the surfactants on the release performance are presented and analyzed.

Release Characteristics of Sulfadiazine Using Chitosan Matrices (키토산 매트릭스를 이용한 Sulfadiazine의 방출 특성)

  • 문일식;나재운
    • KSBB Journal
    • /
    • v.11 no.6
    • /
    • pp.676-680
    • /
    • 1996
  • The characteristics of controlled drug release were studied for a biodegradable drug delivery system. A biodegradable chitosan matrix was prepared after swelling chitosan with 10%-acetic acid and adding sulfadiazine. The release behavior of sulfadiazine from the chitosan matrix was studied using the Higuchi's diffusion controlled model in phosphate buffer solutions of pH 7.4 and pH 1.2. The drug release time was delayed by increasing the content of sulfadiazine. The drug release at pH 7.4 was more delayed than that at pH 1.2. The reason is that chitosan has greater swelling abilities at low pH than at high pH. The apparent release rate constant(K) increased as the concentration of drug increased. In shoat, the formulation the biodegradable chitosan matrix to suppress the burst effect of drug release mechanism, which led to a sustained release pattern.

  • PDF

A Formulation Study for the Controled Release Rate of Diltiazem. HCl using the Multiple Drug Release System (다중약물방출시스템을 이용한 염산딜티아젬의 방출속도 조절에 관한 연구)

  • Kim, Hak-Hyung;Oh, Jin-Hwan;Han, Kun
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.3
    • /
    • pp.157-163
    • /
    • 2005
  • The pellets with multiple drug release system (MDRS) of Diltiazem. HCl which consist of immediate drug release layer, drug reservoir layer and controlled release rate membrane, were prepared by using CF-Coater. As main factors for more effective MDRS of Diltiazem. HCl, ethylcellulose was used for the controlling drug release rate, and diethylphthalate was used for plasticizer, respectively. In vitro evaluation study was performed by comparative dissolution test between our test MDRS and reference Diltiazem. HCl preparation. The physical tests were performed using FT-IR and SEM. In vivo evaluation was also performed by observing the behavior of a plasma drug concentration after oral administration. The bioavailability was determined by analyzing the blood sample after oral administration to healthy, male volunteers once a day. As a result, there were no significant differences in bioequivalence parameters $(AUC_{\infty},\;C_{max},\;t_{1/2})$ between two systems. It might be concluded that our MDRS of Diltiazem. HCl could be an alternative delivery system to reference drug preparation.

Controlled Release of Isonicontinic Acid Hydrazide from the Membrane-Coated Tablet

  • Kim, Ki-Man;Kim, Shin-Keun
    • Archives of Pharmacal Research
    • /
    • v.8 no.1
    • /
    • pp.7-14
    • /
    • 1985
  • Membrane-coated tablet of isonicotinic acid hydrazide (INAH) which releases INAH at the zero-order kinetics was deveoped. It consisted of a soluble tablet core surrounded by a porous membrane which controls the diffusion rate. Tablet cores were prepared by compressing granules of INAH and polyvinyl chloride (PVC) dissolved in methyl ethyl ketone in which micronized sucrose were suspended. Diffusion rate of INAH from the tablet through the membrane was constant until the loaded INAH in the core was almost released. The rate was independent of pH of the dissolution medium. Water-soluble sucrose particles behaved as a poreproducing material in the water-insoluble PVC film coat. The pH independency of the rate was probably due to the high solubility of INAH in the water of wide pH range. The diffusion rate of INAH could be controlled by chnaging the composition of the membrane or the coat weight. This membrane-coated INAH tablet seemed to be a powerful candidate for the controlled release drug delivery system (DDS) of INAH or other highly watersoluble drugs.

  • PDF