• Title/Summary/Keyword: controlled BHF

Search Result 4, Processing Time 0.016 seconds

Improvement of the Stamping Formability by BHF Control (블랭크 홀딩력 제어에 의한 스탬핑 가공성 향상 기술)

  • 김영석;임성언;손형성;한수식
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.269-275
    • /
    • 1999
  • A variable blank holding force method is proposed to improve deep drawing characteristics of sheet materials. In this method, the blank holding force (BHF) is controlled throughout a drawing process so that the punch load does not exceed a critical value, which is slightly less than the conventional process with the conforming process with the variable BHF is more flexible than the conventional process with the constant BHF and it could be used for improving the product's quality and drawability. In this paper we suggest a method controlling the BHF as a function of punch travel during the forming process. The optimization BHF curves are determined theoretically and experimentally. It is concluded that for the case of optimum BHF control methods the drawn cup height and the drawing formability achieved by this method are increased than those for constant BHF method. Also, as comparing the wall thickness distribution of the cup drawn by the constant BHF and the optimum BHF control, the BHF control reduce the wall thickness variation of the drawn cup at the cup wall and make the cup thickness distribution more uniformly than the constant BHF.

  • PDF

The Effect of Tool Surface Treatment and Temperature on Deep Drawability of AZ31 Magnesium Alloy Sheet (툴 표면처리 및 온도가 AZ31 마그네슘 판재의 드로잉성에 미치는 영향)

  • Choo D. G.;Lee J. H.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.118-121
    • /
    • 2005
  • The square cup drawing of magnesium alloy AZ31 $(aluminum\;3\%,\;Zinc\;1\%)$ sheets was studied by experimental approach in various temperatures (200, 250, 300, 350, $400^{\circ}C$) when blank holding force (BHF) was controlled in real-time. And so on, the drawability was measured with the different die and punch coating. The square cup drawing test was performed by three different coated punches (CrN, TiCN, Non-coated). BHF was set about 2.0 KN, forming speed was 50 mm/min, blank thickness were 0.5, 1.0mm and the cup size was 40 mm by 60 mm after forming. The experimental data of square cup drawing test show that the tools coating and temperature were effect on the drawbility.

  • PDF

The Drawbility Estimation in Warm and Rot Sheet Forming Process of Magnesium for Substitution of Die-casting Process (다이캐스팅 공정의 대체를 위한 마그네슘판재의 온간, 열간 ???K드로잉 성형성 평가)

  • Choo D. K.;Oh S. W.;Lee J. H.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.407-410
    • /
    • 2005
  • The drawability of AZ31B magnesium sheet is estimated according to the variable temperatures (200, 250, 300, 350 and $400^{\circ}C$), forming speed (20, 50, 100 mm/min), thickness (0.8, 1.4 t), blank holding force (1.0, 1.4, 1.7kN). The deep drawing process (DDP) of circular cup is used in forming experiments. The results of deep drawing experiences show that the drawability is well at the range from 250 to $300^{\circ}C$, 50mm/min forming speed and 1.4kN blank holding force. The 0.8t magnesium sheets were deformed better than 1.4t. BHF was controlled in order to improve drawability and protect the change of cup thickness. When BHF was controlled, tearing and thickness change were decreased and LDR. was improved from 2.1 to 3.0.

  • PDF

Influence of Blankholding Force and Blank Diameter on the Drawability and Quality of Very Small Cylindrical Cups (극소형 원통컵의 드로잉성과 품질에 미치는 블랭크 홀딩력과 블랭크 직경의 영향)

  • Lee, K.S.;Kim, J.B.;Jung, W.J.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.23 no.8
    • /
    • pp.489-494
    • /
    • 2014
  • Micro forming is an appropriate process to manufacture very small metal parts which can be employed in the field of electronic devices or electrically controlled mechanical systems. The purpose of the current study was to investigate the influences of both blankholding force and blank diameter for the deep drawing of very small cups. It is essential to control the blankholding force because improper force can result in defects such as wrinkles in the flange or cracks in the corner of the drawn cups. In the current study blankholding force was controlled by springs connected to the blankholder of a press die. Exchangeable bushing dies with various die-corner radii were also used. To obtain the limit drawing ratio for each working condition several sizes of circular specimens were prepared using blanking tools. Beryllium copper(C1720) alloy sheet of $50{\mu}m$ thickness was chosen for the experiments. The maximum limit drawing ratio of 2.1 was achieved experimentally for the conditions of the blankholder force(BHF)=5.3kgf and Rd=0.3mm. Both thickness and hardness along the central section of drawn cups were measured and compared for different drawing conditions. It was found that the deviation of measured data in the thickness and hardness distribution increases with increasing blankholder force and blank diameter.