• Title/Summary/Keyword: control system and monitoring system development

Search Result 949, Processing Time 0.028 seconds

16 channel Loadcell measurement system development. (16 채널 로드셀 계측시스템 개발)

  • Jarng, Soon-Suck;Kim, Kyung-Suk;Won, Yong-Ill;Kim, Dae-Gon
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1055-1058
    • /
    • 2005
  • The present paper designed a weight measuring instrumentation system in which data conversion and a series of signal processing were totally equipped. 16 loadcell are incoming sensors and each output of the loadcell was amplified and filtered for proper analog signal processing. Several measuring instrumentation OP amps and general purposed OP amps were used. 12 bits A/D converters converted analog signals to digital bits and a PIC microprocessor controlled the 16 channels of loadcell. RF RS232 modules were used for wireless communication between the PIC microprocessor and an ethernet host for a remote sensor monitoring system development.

  • PDF

Summative Usability Assessment of Software for Ventilator Central Monitoring System (인공호흡기 중앙감시시스템 소프트웨어의 사용적합성 총괄평가)

  • Ji-Yong Chung;You Rim Kim;Wonseuk Jang
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.363-376
    • /
    • 2023
  • According to the COVID-19, development of various medical software based on IoT(Internet of Things) was accelerated. Especially, interest in a central software system that can remotely monitor and control ventilators is increasing to solve problems related to the continuous increase in severe COVID-19 patients. Since medical device software is closely related to human life, this study aims to develop central monitoring system that can remotely monitor and control multiple ventilators in compliance with medical device software development standards and to verify performance of system. In addition, to ensure the safety and reliability of this central monitoring system, this study also specifies risk management requirements that can identify hazardous situations and evaluate potential hazards and confirms the implementation of cybersecurity to protect against potential cyber threats, which can have serious consequences for patient safety. As a result, we obtained medical device software manufacturing certificates from MFDS(Ministry of Food and Drug Safety) through technical documents about performance verification, risk management and cybersecurity application.The purpose of this study is to conduct a usability assessment to ensure that ergonomic design has been applied so that the ventilator central monitoring system can improve user satisfaction, efficiency, and safety. The rapid spread of COVID-19, which began in 2019, caused significant damage global medical system. In this situation, the need for a system to monitor multiple patients with ventilators was highlighted as a solution for various problems. Since medical device software is closely related to human life, ensuring their safety and satisfaction is important before their actual deployment in the field. In this study, a total of 21 participants consisting of respiratory staffs conducted usability test according to the use scenarios in the simulated use environment. Nine use scenarios were conducted to derive an average task success rate and opinions on user interface were collected through five-point Likert scale satisfaction evaluation and questionnaire. Participants conducted a total of nine use scenario tasks with an average success rate of 93% and five-point Likert scale satisfaction survey showed a high satisfaction result of 4.7 points on average. Users evaluated that the device would be useful for effectively managing multiple patients with ventilators. However, improvements are required for interfaces associated with task that do not exceed the threshold for task success rate. In addition, even medical devices with sufficient safety and efficiency cannot guarantee absolute safety, so it is suggested to continuously evaluate user feedback even after introducing them to the actual site.

16 Channel Strain Gauge Measuring Ubiquitous System Development (유비쿼터스 지향의 16채널 스트레인 게이지 계측 시스템 개발)

  • Jang, Soon-Suk;Kim, Kyung-Suk;Won, Yong-Ill;Kim, Dae-Gon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.9
    • /
    • pp.912-917
    • /
    • 2006
  • A strain gauge weight measuring instrumentation system was designed with RF sensor network facilities. In the sensor module system data conversion and a series of signal processing were totally equipped. 16 strain gauges are incoming sensors and each output of the strain gauge was amplified and filtered for proper analog signal processing. Several measuring instrumentation OP amps and general purposed OP amps were used. 12 bits A/D converters converted analog signals to digital bits and a PIC microprocessor controlled the 16 channels of strain gauges. RF RS232 modules were used for wireless communication between the PIC microprocessor and an Ethernet host far a remote sensor monitoring system development.

Development of a Power Management System for Efficient Power usage of Intelligent Ship (지능형 선박의 효울적인 전력사용을 위한 전력 관리 시스템 개발)

  • Park, Ji-Sang;Jeon, Min-Ho;Lee, Myung-Eui
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.6
    • /
    • pp.609-615
    • /
    • 2013
  • As with any ships, adequate power provision is crucial, especially on the ocean navigating ships far from the land. In order to resolve the effective and economic power supply system of any ship in operation, in this paper, we propose a power management system that intelligently controls the power supply in ships. Power management systems in this design consist of a power load detection system, a generator configuration system, and a power monitoring system respectively. The CT / PT sensor is used to measure amount of current and power in the power detection system, and according to the collected information from various sensor, the generator configuration system will switch on and off the main / sub generator effectively. Finally, the power monitoring system will display all status information of this power management system at a glance for users. This power management systems implemented in this paper is evaluated via real-time experiments, which works well as designed, and certified by KSCIEC61892-1:2012 and KSCIEC60950-1:2008.

Development of electro hydraulic ballast remote valve control system with diagnostic function using redundant modbus communication (이중화 모드버스 통신을 이용한 퍼지기반 고장진단기능을 가진 선박 밸러스트 전기유압식 원격밸브제어시스템 개발)

  • Kim, Jong Hyun;Yu, Yung Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.292-301
    • /
    • 2014
  • This paper describes development of distributed type independent electro-hydraulic ballast valve remote control system with diagnostic function based on fuzzy inference using redundant Modbus communication and ethernet Modbus TCP/IP. Diagnostic function estimate degradation of system components and diagnose system faults, which results in shortage of fault maintenance time and improvement of system safety. Slave devices which control each valve and master device which command, monitor and diagnose slave system are developed. Slave devices are connected to master device with redundant Modbus networks and master device is connected to ship's integrated control system with Modbus TCP/IP. Also this paper describes development of simulator to test and confirm whether developed system can be integrated with ship's integrated control and monitoring system.

A Design of a Simulation Apparatus for the Control of the Personal Rapid Transit(PRT) Vehicles (소형궤도 차량 제어를 위한 모의실험 장치 설계)

  • Lee, Jun-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2001-2005
    • /
    • 2008
  • This paper presents a design of a simulation apparatus to evaluate an operational control algorithm for the PRT system. PRT systems require very short headways to increase the line capacity and a very reliable vehicle control algorithm for avoidance of the impact between vehicles. Therefore, it can be said that the development of an reliable operational control algorithm for the PRT systems is much more important than that of the hardware configurations. In this paper an apparatus is proposed which is composed of virtual vehicles, a central control system, a man-machine interface and monitoring device, making it possible for the designed operational control algorithm to be implemented and tested. For the test of the proposed apparatus a test operational control algorithm is designed and the experimental results show the effectiveness of the proposed simulation apparatus for test and evaluation of the PRT operational control algorithms.

SPACE-BASED OCEAN SURVEILLANCE AND SUPPORT CAPABILITY

  • Yang Chan-Su
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.253-256
    • /
    • 2005
  • The use of satellite remote sensing in maritime safety and security can aid in the detection of illegal fishing activities and provide more efficient use of limited aircraft or patrol craft resources. In the area of vessel traffic monitoring for commercial vessels, Vessel Traffic Service (VTS) which use the ground-based radar system have some difficulties in detecting moving ships due to the limited detection range. A virtual vessel traffic control system is introduced to contribute to prevent a marine accident such as collision and stranding from happening. Existing VTS has its limit. The virtual vessel traffic control system consists of both data acquisition by satellite remote sensing and a simulation of traffic environment stress based on the satellite data, remotely sensed data. And it could be used to provide timely and detailed information about the marine safety, including the location, speed and direction of ships, and help us operate vessels safely and efficiently. If environmental stress values are simulated for the ship information derived from satellite data, proper actions can be taken to prevent accidents. Since optical sensor has a high spatial resolution, JERS satellite data are used to track ships and extract their information. We present an algorithm of automatic identification of ship size and velocity. This paper lastly introduce the field testing results of ship detection by RADARSAT SAR imagery, and propose a new approach for a Vessel Monitoring System(VMS), including VTS, and SAR combination service.

  • PDF

Development of Heterarchical Control System through Automated Plant Monitoring (공장모니터링을 통한 수평구조 공장제어시스템의 개발)

  • Lee, Seok-Hee;Bae, Yong-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.1
    • /
    • pp.108-118
    • /
    • 1997
  • The heterarchical structure provides a more attractive solution to the conventional hierarchical structure as the density and level of distrubution of computing resources in manufacturing system expands. Tracing the evolution of control structures for automated manufacturing systems, this paper discusses the design principles for heterarchical system to reduce complexity, increase extendability, flexible configurability and suggests a good example of real-time adaptation using the concept of intelligent agent of manufac- turing entities and fault diagmosis system.

  • PDF

The Analysis of Welding Deformation in Arc-spot Welded Structure (II) - Displacement Monitoring and Deformation Analysis - (아크 점용접 구조물의 정밀 용접 열변형 해석에 관한 연구 (II) - 변위 모니터링 및 변형 모델 정립 -)

  • 장경복;조상명
    • Journal of Welding and Joining
    • /
    • v.21 no.4
    • /
    • pp.80-86
    • /
    • 2003
  • Arc-spot welding is generally used in joining of precise parts such as case and core in electric compressor. It is important to control joining deformation in electric compressor because clearance control of micrometer order is needed for excellent airtightness and anti-nose. The countermeasures for this deformation in field have mainly been dependent on rule of try and error by operator's experience because of productivities. For control this deformation problem without influence on productivities, development of exact simulation model should be needed. In this study, on the basis of previous study, the analysis model io predict deformation of precise order in arc-spot welded structure with non-uniform stiffness is brought up through feedback and tuning between monitoring data and analysis results. For this, deformation monitoring system was built and boundary condition considering mechanical melting temperature was applied.

Development of an Anaesthesia Ventilator by Volume Control Method and a Gas Monitoring System (가스 모니터 및 볼륨 제어 방식의 마취기용 인공 호흡기 개발)

  • Lee, Jong-Su;Seong, Jong-Hun;Kim, Yeong-Gil
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.4
    • /
    • pp.42-48
    • /
    • 2000
  • Generally an operator would take notice at putting a patient under anesthesia. If the operation is executed in mistake, the patient is exposed to danger. The object of this Paper is that a system is developed for an accuracy of system and a convenience of user interface to prevent an operation of several elements of risk by mistake. The part of electrical system particularly is made for convenience of a manipulation using electrical switch and encoder. A real-time monitoring system is developed for an airway pressure and a gas concentration of carbon dioxide of patient using graphic LCD(liquid crystal display). Moreover, this flow control system could be developed control with accuracy by feedback control method. This is implemented using flow control valve and flow sensor. The implemented system gives convenience and precision of a manipulation of variable value using developed technique. This system shows guaranteed stabilization and confidence of anesthesia ventilator by notifying us that patient's state and information in case of being out of alarm range of variable value.

  • PDF