• 제목/요약/키워드: contractility

검색결과 320건 처리시간 0.031초

당뇨병 백서의 복부 대동맥 운동성에 대한 Vit C 의 보호효과 (The Protective Effects of Ascorbic Acid on the Vascular Motilities in Streptozotocin- induced Diabetic Rat)

  • 김영진;양기민;조대윤;손동섭;이무열
    • Journal of Chest Surgery
    • /
    • 제34권7호
    • /
    • pp.515-523
    • /
    • 2001
  • 배경: 당뇨병 환자에서 사망률과 이환률의 원인은 70%이상 혈관계의 합병증에 기인한다. 이러한 합병증은 혈관 내피세포 이완 작용 이상과 연관되어 있으며 이는 oxygen free radical의 직접적인 독성으로 추정되어 본 연구는 당뇨를 유발시킨 백서 복부 대동맥 운동성에 대한 Vit C의 보호효과를 연구 목적으로 한다. 대상 및 방법: 백서 60마리를 실험군(n=33)과 대조군(n=27)으로 나누고 실험 군은 streptozotocin을 투여하여 당뇨를 유발시켰다. 각각 실험 군과 대조군을 ascorbic acid를 투여한 군과 투여하지 않은 군으로 세분한 후 ascorbic acid투여 직후, 6주, 9주, 12주후의 복부 대동맥 혈관근육의 운동성을 측정하였다. 결과: 대조군의 경우 6주째 복부 대동맥 절편에서 acetylcholine투여 후 정상적인 이완반응이 나타났으나 실험군의 경우 현저히 저하됨이 관찰되었다. 9, 12주 째 절편에서는 실험군 중 ascorbic acid투여군에서 acetylcholine에 의한 이완반응이 거의 대조군에서의 결과와 일치할 정도로 회복되었다. 결론: 이상의 결과로 당뇨병을 유발한 백서에서 내피세포 의존적인 장애가 나타남을 확인할 수 있었으며 이러한 장애는 ascorbic acid의 투여로 회복됨을 알 수 있었으며 그 효과는 항산화 작용에서 비롯된 것으로 생각되므로 ascorbic acid가 당뇨환자의 혈관성 질환에 대해 보호적 효과를 보일 수 있을 것으로 사료된다.

  • PDF

갑상선기능항진증(甲狀線機能亢進症)에서 좌심실용적(左心室容積) 및 기능변화(機能變化)에 관한 연구(硏究) (Effects of Thyroid Hormone on Left Ventricular Volume and Function in Hyperthyroidism)

  • 이명철;고창순
    • 대한핵의학회지
    • /
    • 제17권2호
    • /
    • pp.1-17
    • /
    • 1983
  • The purpose of this study is to investigate the effects of thyroid hormone on the left ventricular(LV) volume arid function in man with untreated hyperthyroidism and to determine the effects of successful therapy for thyrotoxicosis on the ventricular pathophysiology. In the present study, equilibrium radionuclide cardiac angiography was performed and LV volume index, ejection phase indexes of LV performance, serum thyroid hormone levels and other hemodynamic parameters were measured in 28 normal subjects and 39 patients with hyperthyroidism before treatment and again every 4 weeks for the first 2 months after the initiation of effective therapy. The results obtained were as follows; 1) In the untreated hyperthyroid state heart rate, blood volume, cardiac index and stroke volume index($97{\pm}14$ beats/min, $73.5{\pm}11.8ml/kg,\;6.9{\pm}1.4\;l/min/m^2$ and $77.6{\pm}13.8ml/m^2$, respectively) were increased significantly compared to those in normal control($74{\pm}12beats/min$, $66.6{\pm}14.8ml/kg,\;3.8{\pm}1.2\;l/min/m^2$ and $56.6{\pm}13.2ml/m^2$ respectively). $(Mean{\pm}SD)$ 2) There was a significant increase in LV end-diastolic volume index in patients with hyperthyroidism ($30.5{\pm}7.5$ for hyperthyroid group compared to a normal control of $22.2{\pm}6.5$; p<0.001), whereas end-systolic volume index remained unchanged $9.6{\pm}3.6\;and\;8.8{\pm}3.3$ respectively).3) In patients with hyperthyroidism, LV ejection fraction was $70.0{\pm}5.6%$, fractional shortening $32.9{\pm}5.1%$, mean velocity of circumferential fiber shortening(mean Vcf) $1.34{\pm}0.31$ circ/sec and maximum ejection rate $3.47{\pm}0.80$. All the ejection phase indexes were significantly greater than those in normal control($65.2{\pm}5.7%,\;28.8{\pm}3.2%,\;0.88{\pm}0.37$ circ/see and $2.27{\pm}0.50$, respectively; p<0.001). 4) Effective therapy produced significant decrease in all the values of serum thyroid hormone concentrations(p<0.00l), hemodynamic parameters(p<0.001), end-diastolic volume index(p<0.01) and ejection phase indexes of LV contractility in patients with hyperthyroidism and after one to two months, when the patients were euthyroid, these measurements were in the range of normal. 5) A significant linear correlation between mean Vcf and serum thyroxine level(r=0.63, p<0.001) as well as between mean Vcf and serum triiodothyronine level(r=0.62, p<0.001) was found. The lesser degree of correlation was also noted between other ejection phase indexes and serum thyroid hormone concentrations. The results indicate that the major effects of excess thyroid hormone on the LV in human beings with hyperthyroidism are an enhancement of LV function and an increase in LV enddiastolic volume and that these effects cause predictable reversible cardiac alteration which are changed dramatically and immediately after effective therapy.

  • PDF

산조인탕이 수면박탈 흰쥐 심장의 혈역학적 기능에 미치는 영향 (Effects of Sanjointang on Hemodynamic Functions of Isolated Rat Heart Induced by Sleep Deprivation)

  • 신유정;김덕곤
    • 대한한방소아과학회지
    • /
    • 제24권3호
    • /
    • pp.106-120
    • /
    • 2010
  • Objectives: Sanjointang has been clinically used much for treating sleeplessness. However, the effects of Sanjointang in artificial sleep deprivation situations are not known. The purpose of this study is to evaluate the heart rate, left ventricular systolic pressure, left ventricular diastolic pressure, +dp/dt maximum, -dp/dt maximum, and -dp/dt / +dp/dt ratio which are related to the hemodynamic functions of the heart by using sleep-deprived Sparague-Dawley rats, in order to clarify the impact of Sanjointang on hemodynamic functions of the heart of sleep deprived rats. Methods: Eighteen hearts were removed from the male Sparague-Dawley rats weighting about 180g were perfused by the Langendorff technique with modified 37 Krebs-Henseleit's buffer solution at a constant perfusion pressure (60mmHg). They were randomly assigned to one of the following three groups, 1) Normal group (those which did not have sleep deprivation and received normal saline administration), 2) Control group (sleep deprived and normal saline administered), 3) Sample group (sleep deprived and Sanjointang was administered). Control and sample groups rats were deprived 96 hours of sleep by using the modified multiple platform technique. Heart rate, left ventricular systolic pressure, left ventricular diastolic pressure, +dp/dt maximum, -dp/dt maximum, -dp/dt / +dp/dt ratio were evaluated at baseline after the administration of either normal saline or Sanjointang. Results: The heart rate and -dp/dt / +dp/dt ratio was significantly decreased in rats with 96 hours of sleep deprived significantly decreased. The change in the heart rate after administering Sanjointang did not show any significant difference. The left ventricular systolic pressure of the removed heart significantly decreased due to Sanjointang administration, while the left ventricular diastolic pressure significantly increased (p<0.05). The +dp/dt maximum and -dp/dt maximum both significantly decreased in the removed heart after administering Sanjointang. (p<0.05). There was no significant difference observed in the -dp/dt / +dp/dt ratio after administering Sanjointang. Conclusions: According to the results above, sleep deprivation significantly decreases heart rate and -dp/dt / +dp/dt ratio. This is considered as a result of exhaustion due to accumulation of fatigue. Meanwhile, Sanjointang reduced left ventricular systolic pressure and raised left ventricular diastolic pressure, and relieved the contractility and relaxation of the myocardium. Consequently, this reduces the burden of the heart and creates a relatively stabilized heart condition similar to a sleeping condition.

A Study on the $Na^+/Ca^{2+}$ Exchange Mechanism in the Smooth Muscle of Guinea-pig Stomach

  • Kim, Eui-Yong;Han, Jin;Kim, Ki-Whan
    • The Korean Journal of Physiology
    • /
    • 제26권1호
    • /
    • pp.55-68
    • /
    • 1992
  • The effects of changes in extracellular $Na^+\;and\;Ca^+$ concentration on the membrane potential and contractility were studied in the antral circular muscle of guinea pig stomach in order to elucidate the existence and the nature of $Na^+/Ca^{2+}$ exchange mechanism. All experiments were performed in tris buffered Tyrode solution which was aerated with 100% $O_2$ and kept at $35^{\circ}C.$ The treatment of $10^{-5}$ ouabain was performed to induce intracellular $Na^+$ loading prior to the start of experiment. The results were as follows: 1. $Na^+$-free Tyrode or high $Ca^{2+}$-Tyrode solution hyperpolarized the membrane potential and induced contracture. The time course of contracture was similar to that of change in membrane potential. 2. The degree of hyperpolarization and the amplitude of contracture decreased in accordance with the increase of extracellular $Na^+$ concentration. 3. $Na^+$-free contracture was developed even after blocking the influence of intrinsic nerves by the pretreatment with atropine, guanethidine and TTX. 4. $Ca^{2+}$-channel blockers(D-600 or $Mn^{2+}$) and the blocker of intracellular $Ca^{2+}$ release from sarcoplasmic reticulum(ryanodine) did not suppress the development of $Na^+$-free contracture. And also, dinitrophenol had no effect on $Na^+$-free contracture. 5. Dose-response relationship between extracellular $Na^+$ concentrations and the magnitude of contractures showed a sigmoid pattern. The slope of straight line from Hill plot was 2.7. 6. In parallel with the increase of extracellular $Ca^{2+}$ concentration, the amplitude of contracture increased dose dependently and was maximum at 8 mM $Ca^{2+}$-Tyrode solution. 7. The relationship between extracellular $Ca^{2+}$ concentrations and the magnitude of contractures showed hyperbolic pattern. The slope of straight line from Hill plot was 1.1. From the above results, it is suggested that $Na^+/Ca^{2+}$ exchange mechanism exists in the antral circular muscle of guinea pig stomach and this mechanism affects the membrane potential electrogenically.

  • PDF

Dichloroisoproterenol및 인삼(人蔘)의 이삼약물(二三藥物)의 작용(作用)에 미치는 영향(影響) (Influence of Dichloroisoproterenol and Panax Ginseng on the action of some drugs.)

  • 천연숙;최백희;김치억;임규복;최경훈
    • 대한약리학회지
    • /
    • 제2권1호
    • /
    • pp.21-29
    • /
    • 1966
  • Dichloroisoproterenol(DCI) i; one of the well known ${\beta}$-adrenergic receptor blocking agents. According to Moran and Perkins, DCI has sympathomimetic like action in relatively low concentrations. Fleming and Hawkins confirmed that DCI acts upon the receptors concerned with positive chronotropic and inotropic actions in the heart. Vogins reported that DCI, in concentration of $5{\times}10^{-8}$ to $5{\times}10^{-6}g/ml$, had properties of sympathomimetic amine causing positive inotropic and chronotropic actions in normal rat atria. And James and Nadeau found that DCI had not only adrenergic blocking effect in moderate and higher concentrations, but it also blocked the effect on the sinus node by vagal stimulation and of directly administered acetylcholine in higher concentrations. As stated above by many authors, DCI has complicated actions according to its concentrations. Our aim at the present experiments was to study the effects of DCI to the action of ouabain and acetylcholine upon the excised rabbit atria, as well as to the action of barium chloride and acetylcholine upon the excised rabbit intestine. In addition, Pan ax Ginseng is widely used as tonics in oriental nations, its pharmacological action, however, has not been clearly established. So we atempted to investigate the effects of the water extract of Panax Ginseng to the action of ouabain and DCI upon both atria and intestine. The results obtained were as follows. 1) DCI has a negative inotropic effect on the excised rabbit atria at concentration of $10^{-5}$ and a positive inotropic effect at concentration of $10^{-6}$. 2) DCI (at concentration of $10^{-6}$) potentiates the positive inotropic effect of ouabain upon the excised rabbit atria. 3) DCI antagonizes the action of acetylcholine upon the excised rabbit atria. 4) The water extract of Panax Ginseng, at concentration of $10^{-3}$, decreases the contractile force of rabbit atria, and tends to slightly increase that of rabbit atria at $10^{-4}$. 5) The water extract of Panax Ginseng exhibits a synergistic action with ouabain on the contractile force of rabbit atria. 6) DCI, in concentrations of $10^{-7}{\sim}10^{-6}$, depresses the tone and amplitude of contraction of the excised rabbit intestine. The depression of the intestinal tone markedly appears in pretreatment with reserpine 2mg/kg 24 hours. 7) DCI antagonizes the contractile effect of barium chloride on the excised rabbit atria. 8) DCI has no significant influence on the action of acetylcholine upon the excised rabbit intestine. 9) The series of those evidences indicates that DCI has a sympathomimetic-like action and more over a relaxing action directly on the excised rabbit intestine. 10) The water extract of Panax Ginseng in concentrations of $10^{-4}{\sim}10^{-3}$, has transient depression of the intestinal tone, but later gradually recovers its normal motility: 11) The water extract of Panax Ginseng has a synergistic action with ouabain on the intestinal contractility.

  • PDF

Comparative study of acute in vitro and short-term in vivo triiodothyronine treatments on the contractile activity of isolated rat thoracic aortas

  • Lopez, Ruth Mery;Lopez, Jorge Skiold;Lozano, Jair;Flores, Hector;Carranza, Rosa Angelica;Franco, Antonio;Castillo, Enrique Fernando
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권4호
    • /
    • pp.339-348
    • /
    • 2020
  • We aimed to characterize the participation of rapid non-genomic and delayed non-genomic/genomic or genomic mechanisms in vasoactive effects to triiodothyronine (T3), emphasizing functional analysis of the involvement of these mechanisms in the genesis of nitric oxide (NO) of endothelial or muscular origin. Influences of in vitro and in vivo T3 treatments on contractile and relaxant responsiveness of isolated rat aortas were studied. In vivo T3-treatment was 500 ㎍·kg-1·d-1, subcutaneous injection, for 1 (T31d) and 3 (T33d) days. In experiments with endothelium-intact aortic rings contracted with phenylephrine, increasing concentrations of T3 did not alter contractility. Likewise, in vitro T3 did not modify relaxant responses induced by acetylcholine or sodium nitroprusside (SNP) nor contractile responses elicited by phenylephrine or angiotensin II in endothelium-intact aortas. Concentration-response curves (CRCs) to acetylcholine and SNP in endothelium-intact aortic rings from T31d and T33d rats were unmodified. T33d, but not T31d, treatment diminished CRCs to phenylephrine in endothelium-intact aortic rings. CRCs to phenylephrine remained significantly depressed in both endothelium-denuded and endothelium-intact, nitric oxide synthase inhibitor-treated, aortas of T33d rats. In endothelium-denuded aortas of T33d rats, CRCs to angiotensin II, and high K+ contractures, were decreased. Thus, in vitro T3 neither modified phenylephrine-induced active tonus nor CRCs to relaxant and contractile agonists in endothelium-intact aortas, discarding rapid non-genomic actions of this hormone in smooth muscle and endothelial cells. Otherwise, T33d-treatment inhibited aortic smooth muscle capacity to contract, but not to relax, in an endothelium- and NO-independent manner. This effect may be mediated by delayed non-genomic/genomic or genomic mechanisms.

Isoproterenol 투여로 유발된 심근세포 손상에 미치는 diltiazem의 영향 (Effects of Diltiazem on Isoproterenol-induced Myocardial Cell Wounding in the Rabbit)

  • 김현;장대영;라봉진;김호덕
    • Applied Microscopy
    • /
    • 제27권2호
    • /
    • pp.121-130
    • /
    • 1997
  • It has been demonstrated that majority of cells in the mammalian body such as myocytes and epithelial cells of skin and intestine respond to mechanical force or environmental factors and exhibit partial disruption of cell membrane, i. e., cell wounding, even in a physiological condition. Myocardial cells are rather apt to be wounded than other cells since they are definitely exposed to mechanical stress by contraction-relaxation and blood flow. However, the mechanism how myocardial cells protect themselves against cell wounding is not yet clarified. On this background, the present study was performed to elucidate whether albumin leakage is related to cell wounding and to assess whether diltiazem, a potent calcium channel blocker, is beneficial in isoproterenol-induced cell wounding in the heart. Hearts isolated from New Zealand White rabbits ($1.5\sim2.0kg$ body weight, n=20) were perfused with Tyrode solution by Langendorff technique. After stabilization of baseline hemodynamics, the hearts were subjected to bolus administration of isoproterenol and diltiazem as following order: $1.6{\mu}M$ isoproterenol at zero min (the beginning point): $16{\mu}M$ diltiazem at 20min; $1.6{\mu}M$ isoproterenol at 25min; $16{\mu}M$ isoproterenol at 45 min; $160{\mu}M$ diltiazem at 65 min; $16{\mu}M$ isoproterenol at 70 min. During all experiments, the left ventricular function was recorded, albumin leakage in the coronary effluents was analyzed by electrophoresis and Western blot, and myocardial cell membranes were examined by conventional transmission electron microscopy. Data were analyzed by t-test and linear regression test. Isoproterenol significantly increased the inotropic and chronotropic contractions, coronary flow, and frequency of arrhythmia, however, diltiazem did not influence on hemodynamics except decrease in the frequency of arrhythmia and a slight decrease in contractility. Isoproterenol also resulted partial disruption of myocardial cell membrane and inclose in albumin leakage, while diltiazem pretreatment showed number of electron-dense plaques in the cell membrane and a tendency of decrease in albumin leakage. These results indicate that albumin leakage may be an indirect index of cell wounding in the heart and diltiazem nay be beneficial to protect myocardial cells against isoproterenol-induced cell wounding. It is likely that diltiazem promotes resealing process of the cell membrane.

  • PDF

토끼 동방결절 박동수에 대한 아데노신의 작용 (Inhibitory action of adenosine on sinus rate in isolated rabbit SA node)

  • 채헌;서경필;김기환
    • Journal of Chest Surgery
    • /
    • 제16권2호
    • /
    • pp.199-212
    • /
    • 1983
  • The inhibition/influences of adenine compounds on the heart have been described repeatedly by many investigators, since the first report by Druny and Szent-Gyorgyi [1929]. These studies have shown that adenosine and adenine nucleotides have an over-all effect similar to that of acetylcholine [ACh] by slowing and weakening the heartbeat. The basic cellular and membrane events underlying the inhibitory action of adenosine on sinus rate, however, are not well understood. Furthermore, the physiological role of adenosine in regulation of the heartbeat remains still to be elucidated. Therefore, this study was undertaken in order to examine the response of rabbit SA node to adenosine and to compare the response to that of ACh. Isolated SA node preparation, whole atrial pair, or left atrlal strip was used in each experiment. Action potentials of SA node were recorded through the intracellular glass microelectrodes, which were filled with 3M KCI and had resistance of 30-50 M. All experiments were performed in a bicarbonate-buffered Tyrode solution which was aerated with 3% $CO_2-97%$ $O_2$ gas mixture and kept at $35^{\circ}C$. Spontaneous firing rate of SA node at 35C [Mean + SEM, n=16] was 154 + 3.3 beats/min. The parameters of action potentials were: maximum astolic potential [MDP], -731.7mV: overshoot [OS], 9 + 1.4mV; slope of pacemaker potential [SPP], 94 3.0mV/sec.Adenosine suppressed the firing rate of SA node in a dose dependent manner. This inhibitory effect appeared at the concentration of $10^{-6}M$ and was potentiated in parallel with the increase in adenosine concentration. Changes in action potential by adenosine were dose-dependent increase of MDP and decrease of SPP until $10^{-4}$. Above this concentration, however, the amplitude of action potential decreased markedly due to the simultaneous decrease of both MDP and OS. All these effects of adenosine were not affected by pretreatment of atropine [2mg/l] and propranolol [$5{\times}10^{-6}M$]. ACh [$10^{-6}M$] responses on action potential were similar to those of adenosine by increasing MDP and decreasing SPP. These effects of ACh disappeared by pretreatment of atropine [2mg/1]. Inhibition/effects of adenosine and ACh on sinus rate were enhanced synergistically with the simultaneous administration of adenosine and ACh. Marked decrease of overshoot potential was the most prominent feature on action potential. Dipyridamole [DPM], which is known to block the adenosine transport across cell membrane, definitely potentiated the action of adenosine . Adenosine suppressed the sinus rate and atrial contractility in the same dosage range, even in the reserpinized preparation. Above` results suggest that adenosine suppresses pacemaker activity, like ACh, by acting directly on the membrane of SA node, increasing MDP and decreasing SPP.

  • PDF

Effects of Lemakalim, a Potassium Channel Opener, on the Contractility and Electrical Activity of the Antral Circular Muscle in Guinea-Pig Stomach

  • Kim, Sung-Joon;Jun, Jae-Yeoul;Choi, Youn-Baik;Kim, Ki-Whan;Kim, Woo-Gyeum
    • The Korean Journal of Physiology
    • /
    • 제28권1호
    • /
    • pp.37-50
    • /
    • 1994
  • Synthetic potassium channel openers (KCOs) are agents capable of opening K-channels in excitable cells. These agents are known to have their maximal potency in the smooth muscle tissue, especially in the vascular smooth muscle. Much attention has been focused on the type of K-channel that is responsible for mediating the effects of KCOs. As the KCO-induced changes are antagonized by glibenclamide, an $K_{ATP}$ (ATP-sensitive K-channel) blocker in the pancreatic ${\beta}-cell,\;K_{ATP}$ was suggested to be the channel responsible. However, there also are many results in favor of other types of K-channel $$(maxi-K,\;small\;conductance\;K_{Ca,}\; SK_{ATP}) mediating the effects of KCOs. Effects of lemakalim, (-)enantiomer of cromakalim (BRL 34915), on the spontaneous contractions and slow waves, were investigated in the antral circular muscle of the guinea-pig stomach. Membrane currents and the effects on membrane currents and single channel activities were also measured in single smooth muscle cells and excised membrane patches by using the patch clamp method. Lemakalim induced hyperpolarization and inhibited spontaneous contractions in a dose-dependent manner. These effects were blocked by glibenclamide and low concentrations of tetraethyl ammonium (< mM). Glibenclamide blocked the effect of lemakalim on the membrane potential and slow waves. The mechanoinhibitory effect of lemakalim was blocked by pretreatment with glibenclamide. In a whole ceIl patch clamp condition, lemakalim largely increased outward K currents. These outward K currents were blocked by TEA, glibenclamide and a high concentration of intracelIular EGTA (10 mM). Volatage-gated Ca currents were not affected by lemakalim. In inside-out patch clamp experiments, lemakalim increased the opening frequency of the large conductance $Ca^{2+}-activated$ K channels $(BK_{Ca},\;Maxi-K).$ From these results, it is suggested that lemakalim induces hyperpolarization by opening K-channels which are sensitive to internal Ca and such a hyperpolarization leads to the inhibition of the spontaneous contraction.

  • PDF

기니픽 심근의 수축력과 세포내 $Na^+$ 활성도에 미치는 ${\alpha}_1-Adrenergic$ 수용체 자극효과 (Effects of ${\alpha}_1-Adrenergic$ Stimulation on Contractility and Intracellular $Na^+$ Activity of Guinea Pig Ventricular Muscles)

  • 김진상;강형섭;채수완;이진옥
    • 대한약리학회지
    • /
    • 제32권2호
    • /
    • pp.189-199
    • /
    • 1996
  • Myocardial ${\alpha}_1-adrenoceptors$ have been shown to mediate a biphaslc inotropic response that was characterized by a transient decline followed by a sustained increasing phase in guinea pig ventricular muscle. Recently one group reported that an ${\alpha}_1-adrenoceptors-induced$ intracellular $Na^+$ decrease is linked to fast $Na^+$ channel inhibition and another group reported that it is linked to $Na^+$-$K^+$ pump activation by ${\alpha}_{1b}-adrenoceptors$. But until now, its mechanism is not clear. Therefore, to see whether the $Na^+$channel or $Na^+-K^+$ pump is related to a decrease in intracellular $Na^+$ activity and/or the negative inotropic response, and which ${\alpha}_1-adrenoceptor$ subtype was involved in the decrease in intracellular $Na^+$activity by phenylephrine, we used conventional and sodium selective microelectrodes, and tension transducer to determine the effects of ${\alpha}_1-adrenergic$ stimulation on membrane potential, intracellular $Na^+$ activity, and twitch force in guinea pig ventricular muscles. $10^{-5}$ M Phenylephrine produced a slight hyperpolarization of the diastolic membrane potential, a decrease or increase in $a_N^i_a$, and a biphasic inotropic response. The negative inotropic response accompanied by a decrease in intracellular $Na^+$activity, whereas in muscles showing a remarkable positive inotropic response without initial negative inotropic effect was accompanied by an increase in intracellular $Na^+$ activity. The decrease in intracellular $Na^+$ activity was apparently inhibited by WB4101, an antagonist of the ${\alpha}_{1a}-adrenoceptors$. The decrease in intracellular $Na^+$ activity caused by phenylephrine was not abolished or reduced by a block of the fast $Na^+$ channels. $V_{max}$ also was not affected by phenylephrine. Phenylephrine produced an increase in intracellular $Na^+$ activity in the presence of a high concentration of extracellular $Ca^{2+}$ (in quiescent muscle) or phorbol dibutyrate, a protein kinase C activator(in beating muscle). These suggest that the ${\alpha}_{1a}-adrenoceptors-mediated$ decrease in intracellular $Na^+$ activity may be related to the protein kinase C.

  • PDF