• 제목/요약/키워드: contractility

검색결과 320건 처리시간 0.022초

Analysis of the Molecular Event of ICAM-1 Interaction with LFA-1 During Leukocyte Adhesion Using a Reconstituted Mammalian Cell Expression Model

  • Han, Weon-Cheol;Kim, Kwon-Seop;Park, Jae-Seung;Hwang, Sung-Yeoun;Moon, Hyung-Bae;Chung, Hun-Taeg;Jun, Chang-Duk
    • Animal cells and systems
    • /
    • 제5권3호
    • /
    • pp.253-262
    • /
    • 2001
  • Ligand-receptor clustering event is the most important step in leukocyte adhesion and spreading on endothelial cells. Intercellular adhesion molecule-1 (ICAM-1) has been shown to enhance leukocyte adhesion, but the molecular event during the process of adhesion is unclear. To visualize the dynamics of ICAM-1 movement during adhesion, we have engineered stable Chinese hamster ovary cell lines expressing ICAM-1 fused to a green fluorescent protein (IC1_GFP/CHO) and examined them under the fluorescence microscopy. The transfection of IC1_GFP alone in these cells was sufficient to support the adhesion of K562 cells that express $\alpha$L$\beta$2 (LFA-1) integrin stimulated by CBR LFA-1/2 mAb. This phenomenon was mediated by ICAM-1-LFA-1 interactions, as an mAb that specifically inhibits ICAM-1-LFA-1 interaction (RRl/l) completely abolished the adhesion of LFA-1* cells to IC1_ GFP/CHO cells. We found that the characteristic of adhesion was followed almost immediately (~10 min) by the rapid accumulation of ICAM-1 on CHO cells at a tight interface between the two cells. Interestingly, ICI_GFP/CHO cells projected plasma membrane and encircled approximately half surface of LFA-1+ cells, as defined by confocal microscopy. This unusual phenomenon was also confirmed on HUVEC after adhesion of LFA-1* cells. Neither cytochalasin D nor 2,3-butanedione 2-monoxime an inhibitor of myosin light chain kinase blocked LFA-1-mediated ICAM-1 clustering, indicating that actin cytoskeleton and myosin-dependent contractility are not necessary for ICAM-1 clustering. Taken together, we suggest that leukocyte adhesion to endothelial cells induces specialized form of ICAM-1 clustering that is distinct from immunological synapse mediated by T cell interaction with antigen presenting cells.

  • PDF

Dopamine이 토끼 유두근의 수축력과 활동전압에 미치는 영향 (Effects of Dopamine on the Contractility and Action Potential of the Rabbit Papillary Muscle)

  • 허인회;박종완
    • 약학회지
    • /
    • 제32권6호
    • /
    • pp.402-414
    • /
    • 1988
  • In order to clarify the receptor types and mechanisms underlying the positive inotropic effect of dopamine on the mammalian ventricular myocardium, the action potential, its first derivatives and isometric contraction of the rabbit papillary muscle were recorded using a force transducer and glass capillary microelectrodes filled with 3M KCl. The results were as follows; (1) In normal Tyrode solution, the contractile force was increased and duration of action potential was shortened with increments of dopamine concentration ($10^{-6}-10^{-4}M$). (2) The dose-response curve was markedly shifted to the right by pretreatment with reserpine (5mg/kg i.p., 24hrs prior to the experiment). (3) In 19mM $K^+-Tyrode$ solution, the duration of action potential, maximum rate of rise (V_{max}) of action potential and overshoot were significantly increased with increments of dopamine concentration ($10^{-6}-10^{-4}M$). (4) The inotropic effect of dopamine on the rabbit papillary muscle pretreated with reserpine was antagonized by atenolol ($10^{-6}M$), but not by phentolamine ($3{\times}10^{-6}M$). (5) In rabbit papillary muscle partially depolarized by 19mM $K^+-Tyrode$ solution, slow electrical response (calcium mediated action potential) as well as contraction were restored by dopamine ($10^{-4}M$); this restoration was blocked by calcium antagonists ($3{\times}10^{-5}M$ $LaCl_3{\cdot}6H_2O$, $3{\times}10^{-6}M$ diltiazem) or ${\beta}-adrenoceptor$ antagonist ($3{\times}10^{-6}M$ atenolol), but not affected by ${\alpha}-adrenoceptor$ antagonist ($10^{-5}M$ phentolamine, $3{\times}10^{-6}M$ yohimbine) or vascular dopaminergic receptor antagonist ($10^{-5}M$ haloperidol). The above results may be interpreted as that the positive inotropic effect of dopamine through both direct and indirect action are caused by increase in slow inward current ($Ca^{2+}$ influx into themyocardial cell), and the direct action is mainly due to the stimulation of ${\beta}-adrenoceptors$ in the rabbit papillary muscle.

  • PDF

Anuran Metamorphosis: a Model for Gravitational Study on Motor Development

  • Jae Seung;Jin Cheul;In-Ho;Park, In-Ho
    • Animal cells and systems
    • /
    • 제4권3호
    • /
    • pp.223-229
    • /
    • 2000
  • Limbs and supporting structures of an organism experience a full weight of its own when it lands from water, because neutral buoyancy in the aquatic habitat will be no longer available in the terrestrial world. Metamorphosis of anuran amphibians presents 8 good research model to examine how this transition from non-loading to weight-loading affects development of motor capacity at the time of their first emergence on land. Our video analysis of the transitional anurans, Rana catesbeiana, at Gosner stage 46 (the stage of complete transformation) demonstrated that the take-off speed increased 1.23-fold after the first six hours of weight-loading on the wet ground. It did not increase further during the following three days of loading, and was close to the level of mature frogs with different body mass. During development of larvae in deep water with no chance of landing through metamorphosis, both tension and power of a hindlimb anti-gravity muscle increased 5-fold between stages 37 and n. However, the muscle contractility increased more rapidly when the larvas could access the wet ground by their natural landing behavior after stages 41-42. Muscle power, one of major factors affecting locomotory speed, was 1.29-fold greater in the loaded than in the non-loaded larvae at the transitional stage. Thus, weight-loading had a potentially significant effect on the elevation of motor capacity, with a similar extent of increment in locomotory speed and muscle power during the last stages of metamorphosis. Such a motor adjustment of the froglets in a relatively short transitional period would be important for effective ecological interactions and survival in their inexperienced terrestrial life.

  • PDF

돼지 방광 평활근에 있어서 P2X-purinoceptor의 작용 (Action of P2X-purinoceptor on urinary bladder smooth muscle of pig)

  • 박상은;홍용근;심철수;전석철;김주헌
    • 대한수의학회지
    • /
    • 제37권1호
    • /
    • pp.103-110
    • /
    • 1997
  • The experiments were carried out to elucidate the relationships between neurogenic effects of electrical transmural nerve stimulation and effect of adenosine 5'-triphosphate(ATP) to purinoceptor on the urinary bladder smooth muscle of pig. The results were as follows : 1. The contractile responses induced by electrical transmural nerve stimulation(10V or 20V, 0.5msec, 10sec) were the frequency(2~64Hz) dependent manner. 2. The contractile response induced by carbachol was responsed with a dose-dependent manner and the maximum contractility was $10^{-4}M$. 3. The contractile responses induced by ATP were increased in a dose-dependent manner ($10^{-5}{\sim}10^{-3}M$). 4. The contractile response induced by electrical transmural nerve stimulation(10V, 2~32Hz, 0.5msec, 10sec) was partially blocked by the treatment with atropine($10^{-5}M$), and was powerfully inhibited by 3 times of addition with ATP($10^{-5}M$). 5. The contractile response induced by electrical transmural nerve stimulation(10V, 2~32Hz, 0.5msec, 10sec) was partially blocked by the treatment with atropine($10^{-5}M$), and was completely blocked by the desensitization of the $P_{2X}$-purinoceptor using ${\alpha}$, ${\beta}$-methylene ATP($5{\times}10^{-5}M$). These results suggest that purinergic nerve was innervated, and ATP and acetylcholine was released by the electrical transmural nerve stimulation in urinary bladder smooth muscle of pig.

  • PDF

Thyroid Hormone-Induced Alterations of Ryanodine and Dihydropyridine Receptor Protein Expression in Rat Heart

  • Kim, Hae-Won;Park, Mi-Young;Lee, Eun-Hee;Cho, Hyoung-Jin;Lee, Hee-Ran
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권3호
    • /
    • pp.329-337
    • /
    • 1999
  • Thyroid hormone-induced cellular dysfunctions may be associated with changes in the intracellular $Ca^{2+}$ concentration. The ryanodine receptor, a $Ca^{2+}$ release channel of the SR, is responsible for the rapid release of $Ca^{2+}$ that activates cardiac muscle contraction. In the excitation-contaction coupling cascade, activation of ryanodine receptors is initiated by the activity of sarcolemmal $Ca^{2+}$ channels, the dihydropyridine receptors. In hyperthyroidism left ventricular contractility and relaxation velocity were increased, whereas these parameters were decreased in hypothyroidism. The mechanisms for these changes have been suggested to include alterations in the expression and/or activity levels of various proteins. In the present study, quantitative changes of ryanodine receptors and the dihydropyridine receptors, and the functional consequences of these changes in various thyroid states were investigated. In hyperthyroid hearts, $[^3H]ryanodine$ binding and ryanodine receptor mRNA levels were increased, but protein levels of ryanodine were not changed significantly. However, the above parameters were markedly decreased in hypothyroid hearts. In case of dihydropyridine receptor, there were a significant increase in the mRNA and protein levels, and [3H]nitrendipine binding, whereas no changes were observed in these parameters of hypothyroid hearts. Our findings indicate that hyperthyroidism is associated with increases in ryanodine receptor and dihydropyridine receptor expression levels, which is well correlated with the ryanodine and dihydropyridine binding. Whereas opposite changes occur in ryanodine receptor of the hypothyroid hearts.

  • PDF

Ardipusilloside-I stimulates gastrointestinal motility and phosphorylation of smooth muscle myosin by myosin light chain kinase

  • Xu, Zhili;Liang, Hanye;Zhang, Mingbo;Tao, Xiaojun;Dou, Deqiang;Hu, Liping;Kang, Tingguo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권6호
    • /
    • pp.609-616
    • /
    • 2017
  • Ardipusilloside-I is a natural triterpenoid saponin, which was isolated from Ardisia pusilla A. DC. The aim of the study was to evaluate the stimulation of ardipusilloside-I on gastrointestinal motility in vitro and in vivo. The experiment of smooth muscle contraction directly monitored the contractions of the isolated jejunal segment (IJS) in different contractile states, and the effects of ardipusilloside-I on myosin were measured in the presence of $Ca^{2+}$-calmodulin using the activities of 20 kDa myosin light chain ($MLC_{20}$) phosphorylation and myosin $Mg^{2+}$-ATPase. The effects of ardipusilloside-I on gastro emptying and intestinal transit in constipation-predominant rats were observed, and the MLCK expression in jejuna of constipated rats was determined by western blot. The results showed that, ardipusilloside-I increased the contractility of IJS in a dose-dependent manner and reversed the low contractile state (LCS) of IJS induced by low $Ca^{2+}$, adrenaline, and atropine respectively. There were synergistic effects on contractivity of IJS between ardipusilloside-I and ACh, high $Ca^{2+}$, and histamine, respectively. Ardipusilloside-I could stimulate the phosphorylation of $MLC_{20}$ and $Mg^{2+}$-ATPase activities of $Ca^{2+}$- dependent phosphorylated myosin. Ardipusilloside-I also stimulated the gastric emptying and intestinal transit in normal and constipated rats in vivo, respectively, and increased the MLCK expression in the jejuna of constipation-predominant rats. Briefly, the findings demonstrated that ardipusilloside-I could effectively excite gastrointestinal motility in vitro and in vivo.

Comparative effects of angiotensin II and angiotensin-(4-8) on blood pressure and ANP secretion in rats

  • Phuong, Hoang Thi Ai;Yu, Lamei;Park, Byung Mun;Kim, Suhn Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권6호
    • /
    • pp.667-674
    • /
    • 2017
  • Angiotensin II (Ang II) is metabolized from N-terminal by aminopeptidases and from C-terminal by Ang converting enzyme (ACE) to generate several truncated angiotensin peptides (Angs). The truncated Angs have different biological effects but it remains unknown whether Ang-(4-8) is an active peptide. The present study was to investigate the effects of Ang-(4-8) on hemodynamics and atrial natriuretic peptide (ANP) secretion using isolated beating rat atria. Atrial stretch caused increases in atrial contractility by 60% and in ANP secretion by 70%. Ang-(4-8) (0.01, 0.1, and $1{\mu}M$) suppressed high stretch-induced ANP secretion in a dose-dependent manner. Ang-(4-8) ($0.1{\mu}M$)-induced suppression of ANP secretion was attenuated by the pretreatment with an antagonist of Ang type 1 receptor ($AT_1R$) but not by an antagonist of $AT_2R$ or $AT_4R$. Ang-(4-8)-induced suppression of ANP secretion was attenuated by the pretreatment with inhibitor of phospholipase (PLC), inositol triphosphate ($IP_3$) receptor, or nonspecific protein kinase C (PKC). The potency of Ang-(4-8) to inhibit ANP secretion was similar to Ang II. However, Ang-(4-8) $10{\mu}M$ caused an increased mean arterial pressure which was similar to that by 1 nM Ang II. Therefore, we suggest that Ang-(4-8) suppresses high stretch-induced ANP secretion through the $AT_1R$ and $PLC/IP_3/PKC$ pathway. Ang-(4-8) is a biologically active peptide which functions as an inhibition mechanism of ANP secretion and an increment of blood pressure.

Biphasic augmentation of alpha-adrenergic contraction by plumbagin in rat systemic arteries

  • Kim, Hae Jin;Yoo, Hae Young;Zhang, Yin Hua;Kim, Woo Kyung;Kim, Sung Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권6호
    • /
    • pp.687-694
    • /
    • 2017
  • Plumbagin, a hydroxy 1,4-naphthoquinone compound from plant metabolites, exhibits anticancer, antibacterial, and antifungal activities via modulating various signaling molecules. However, its effects on vascular functions are rarely studied except in pulmonary and coronary arteries where NADPH oxidase (NOX) inhibition was suggested as a mechanism. Here we investigate the effects of plumbagin on the contractility of skeletal artery (deep femoral artery, DFA), mesenteric artery (MA) and renal artery (RA) in rats. Although plumbagin alone had no effect on the isometric tone of DFA, $1{\mu}M$ phenylephrine (PhE)-induced partial contraction was largely augmented by plumbagin (${\Delta}T_{Plum}$, 125% of 80 mM KCl-induced contraction at $1{\mu}M$). With relatively higher concentrations (>$5{\mu}M$), plumbagin induced a transient contraction followed by tonic relaxation of DFA. Similar biphasic augmentation of the PhE-induced contraction was observed in MA and RA. VAS2870 and GKT137831, specific NOX4 inhibitors, neither mimicked nor inhibited ${\Delta}T_{Plum}$ in DFA. Also, pretreatment with tiron or catalase did not affect ${\Delta}T_{Plum}$ of DFA. Under the inhibition of PhE-contraction with L-type $Ca^{2+}$ channel blocker (nifedipine, $1{\mu}M$), plumbagin still induced tonic contraction, suggesting $Ca^{2+}$-sensitization mechanism of smooth muscle. Although ${\Delta}T_{Plum}$ was consistently observed under pretreatment with Rho A-kinase inhibitor (Y27632, $1{\mu}M$), a PKC inhibitor (GF 109203X, $10{\mu}M$) largely suppressed ${\Delta}T_{Plum}$. Taken together, it is suggested that plumbagin facilitates the PKC activation in the presence of vasoactive agonists in skeletal arteries. The biphasic contractile effects on the systemic arteries should be considered in the pharmacological studies of plumbagin and 1,4-naphthoquinones.

척수손상 흰쥐에서 대장 운동에 대한 지실의 효과 (Effect of Poncirus Trifoliata on Colonic Motility in Spinal Cord Injured Rats)

  • 최철원;주민철;이문영
    • 한방재활의학과학회지
    • /
    • 제18권4호
    • /
    • pp.13-24
    • /
    • 2008
  • Objectives : The purpose of this study was to investigate the effect of Poncirus Trifoliata(PT) on improvement of fecal impaction in spinal cord injured(SCI) rats. Methods : Fifteen adult Sprague-Dawley female rats were used weighing 200~250 g. A complete spinal cord transection was performed surgically at the T10 cord level. Experimental groups were assigned into 3 groups: Control(n=5), SCI+vehicle(n=5) and SCI+PT(n=5). PT was administered 100mg/kg in 0.5ml every 24 hours from 1st operation day to 7th day. We measured the body weight and food intake as well as the number and the weight of fecal pellet every morning. After 1 week of operation, whole colon was divided into proximal and distal segments under anesthesia. Each segment of colon was mounted with longitudinal direction in a organ bath. We measured spontaneous contraction and compared the area under the curve in each segments. Enhanced responses were observed by acetylcholine($10^{-6}M$), 40 mM KCl solution, L-NAME($10^{-4}M$). Results : The fecal number and weights were significantly higher in the group of SCI+PT than SCI+vehicle group(p<0.05). In organ bath study, area under the curves of the spontaneous contraction in SCI+vehicle and SCI+PT groups were significantly increased compared to control group. Contractility of distal colon in response to acetylcholine or KCl in SCI+vehicle group was significantly decreased compared to other groups(p<0.05). Conclusions : These results suggest that PT might be useful to promote bowel emptying in spinal cord injured rats.

정상 및 허혈/재관류 흰쥐 심장에 대한 2-클로로-3-(4-시아노페닐아미노 )-1,4-나프토퀴논 ( NQ-Y15 )의 작용 (Effects of 2-Chloro-3-( 4-cyanophenylamino )-1,4-naphthoquinone( NQ-Y15 ) on Normal and Ischemical/reperfused Rat Hearts)

  • 문창현;김지영;백은주;이수환;류충규
    • 약학회지
    • /
    • 제41권6호
    • /
    • pp.829-836
    • /
    • 1997
  • Studies on the effect of quinones on cardiac function has been conducted with normal hearts. But not with injured hearts, I.e. ischemia/reperfusion-injured heart. Quinone compounds are known to produce oxygen free radicals during metabolism, and for this reason, quinones are implicated in the aggravation of ischemia/reperfusion injury or cardioprotection, as in the case of ischemic preconditioning depending on the experimental conditions. The present study was carried out to examine the effect of 2-chloro-3-(4-cyanophenylamino)-1.4-naphthoquinone (NQ-Y15) on cardiac function of ischemic/reperfused and normal rat hearts. In isolated perfused hearts, various functional parameters such as left ventricular developed pressure (LVDP), left ventricular end-diastolic pressure (EDP) and maximum positive and negative dP/dt ($[\pm}dP/dt_{max}$), time to contracture, heart rate (HR) and coronary flow rate (CFR) were measured before and 30 min after dosing and following 25 min ischemia/30min reperfusion. NQ-Y15 increased LVDP, +dP/$d_{max}$and -dP/$dt_{min}$ by 18%. 30%, and 40%, respectively. There were no significant changes in other haemodynamic parameters. After ischemia/reperfusion injury, pretreatment with NQ-Y15 induced a significant decrease in LVDP and $[\pm}dP/dt_{max}$, but an increase in EDP. LDH-release was not significantly increased. These results suggested that NQ-Y15 may augment the ventricular contractility but it makes hearts more vulnerable to ischemia/reperfusion injury.

  • PDF