• 제목/요약/키워드: continuity of spans

검색결과 11건 처리시간 0.019초

PSC-Beam 교량의 연속화에 따른 거동해석 (1) (Behaviors of PSC-Beam Bridges According to Continuity of Spans (1))

  • 곽효경;서영재;정찬묵;박영하
    • 콘크리트학회논문집
    • /
    • 제11권5호
    • /
    • pp.11-20
    • /
    • 1999
  • This paper deals with behaviors of PSC-Beam bridges according to continuity of spans. To analyze the long-term behavior of bridges, an analytical model which can simulate the effects of creep, the shrinkage of concrete, and the cracking of concrete slabs in the negative moment regions is introduced. To consider the different material properties across the sectional depth, the layer approach in which a section is divided into imaginary concrete and steel layers is adopted. The element stiffness matrix is constructed according to the assumed displacement field formulation, and the creep and shrinkage effects of concrete are considered in accordance with the first-order algorithm based on the expansion of the creep compliance. Correlation studies between analytical and experimental results are conducted with the objective to establish the validity of the proposed model. Besides, many uncertainties related to the continuity of spans are analyzed to minimize deck cracking at interior supports.

PSC-Beam 교량의 연속화에 따른 거동해석 (2) (Behaviors of PSC-Beam Bridges According to Continuity of Spans (2))

  • 곽효경;서영재;정찬묵;박영하
    • 콘크리트학회논문집
    • /
    • 제11권5호
    • /
    • pp.21-31
    • /
    • 1999
  • The companion paper presents an analytical model to predict behaviors of PSC-Beam bridges according to continuity of spans. This paper aims at providing several examples of its application to PSC-Beam bridge. In this regard, many uncertainties affecting to the continuity of spans (such as the ultimate shrinkage strain of slab and girders, the prestressing creep of girders, and the time adopting prestressing force) are analysis in detail. Moreover, to increase the serviceability and to remove th inherent structural defects including the cracking at interior supports, a necessity for the parametric studies of PSC-Beam bridges reflecting the construction sequence is emphasized.

A continuity method for bridges constructed with precast prestressed concrete girders

  • Lee, Hwan Woo;Barnes, Robert W.;Kim, Kwang Yang
    • Structural Engineering and Mechanics
    • /
    • 제17권6호
    • /
    • pp.879-898
    • /
    • 2004
  • A method of making simply supported girders continuous is described for bridges with spans of 30-45 m. The splicing method takes advantage of an induced secondary moment to transform the self-weight stresses in the precast simply supported girders into values representative of a continuous girder. The secondary moment results from prestressing of continuity tendons and detensioning of temporary tendons in the girders. Preliminary sections are selected for spliced U-girder bridges with a range of span lengths. Use of the proposed technique results in girder depth reductions of 500-800 mm when compared to standard simply supported I-girder bridges. The flexural behavior of an example bridge with 40-m spans is examined to illustrate the necessary considerations for determining the optimum sequence of splicing operations.

PSC교량 보강시 긴장력 도입순서의 영향에 관한 연구 (A Study on Effect of Pre-Stressing Sequences in PSC Bridge Strengthening Method Using Continuity with External Prestressing)

  • 방명석
    • 한국안전학회지
    • /
    • 제16권4호
    • /
    • pp.123-127
    • /
    • 2001
  • Numerous PSC bridges are stregthened by the combined use of continuity of simple spans and addition of external prestressing. In this case prestressing sequences should be carefully checked due to the effect on the stress and camber of girders and slab. Various prestressing sequences were applied in this field test and measured values were analysed. This results show that preatressing sequences affact the stress and deflection of bridge members, so the prestressing sequence should be considered at the desist and construction stages of deteriorated bridges.

  • PDF

Behavior of continuous RC deep girders that support walls with long end shear spans

  • Lee, Han-Seon;Ko, Dong-Woo;Sun, Sung-Min
    • Structural Engineering and Mechanics
    • /
    • 제38권4호
    • /
    • pp.385-403
    • /
    • 2011
  • Continuous deep girders which transmit the gravity load from the upper wall to the lower columns have frequently long end shear spans between the boundary of the upper wall and the face of the lower column. This paper presents the results of tests and analyses performed on three 1:2.5 scale specimens with long end shear spans, (the ratios of shear-span/total depth: 1.8 < a/h < 2.5): one designed by the conventional approach using the beam theory and two by the strut-and-tie approach. The conclusions are as follows: (1) the yielding strength of the continuous RC deep girders is controlled by the tensile yielding of the bottom longitudinal reinforcements, being much larger than the nominal strength predicted by using the section analysis of the girder section only or using the strut-and-tie model based on elastic-analysis stress distribution. (2) The ultimate strengths are 22% to 26% larger than the yielding strength. This additional strength derives from the strain hardening of yielded reinforcements and the shear resistance due to continuity with the adjacent span. (3) The pattern of shear force flow and failure mode in shear zone varies depending on the amount of vertical shear reinforcement. And (4) it is necessary to take into account the existence of the upper wall in the analysis and design of the deep continuous transfer girders that support the upper wall with a long end shear span.

부분포스트텐션닝 방법을 이요한 2경간 연속 교량구조의 개발을 위한 기초연구 (A Fundamental Study to Develop the Two Span Continuous Bridge using the Partial Post-Tensioning Technique)

  • 이환우;김종수;국승규;김광양
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.797-802
    • /
    • 1997
  • The current study is a part of series o research about the development of new superstructure system to overcome the engineering problems in the design of bridges of 30m to 45m in span length using the existing bridge systems. The basic concept of new system is the continuation of adjacent tow simple spans composed of the precast prestressed concrete U-type sections. The partial post tensioning method is applied to create the continuity. In this study, the new technique was introduced and applied with an example design of tow span of 40m in span length to find the possibility for practical application as the feasibility study. The obtained results show that the new splicing method is expected to offer significant economical and serviceability advantages.

  • PDF

외부강선을 이용한 연속교 보강공법의 실험적 연구 (An Experimental study of External Prestress Strengthening Method for continuous bridges)

  • 한만엽;신재우;강태헌;진경석;강상훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.117-120
    • /
    • 2006
  • This study is for the strengthening method of continuous bridge through external tendon strengthening that is the most general and effective among concrete bridge's strengthening method. Recently, it is numerous that slab's parts between spans have continuity for improving trafficable ability. However, in this case, slab would have a crack; bridge's durability would be damaged, and also it is too difficult to manage and maintain bridge due to the tensile strength of negative moment. Therefore, the purpose of this study is to demonstrate load-carrying through experiments and develop new external pre-stressing strengthening method for reinforcing continuous bridge.

  • PDF

Structural Design of an Ultra High-rise Building Using Concrete Filled Tubular Column with 780 N/㎟ Class High-strength Steel and Fc150 N/㎟ High-strength Concrete

  • Matsumoto, Shuichi;Hosozawa, Osamu;Narihara, Hiroyuki;Komuro, Tsutomu;Kawamoto, Shin-ichiro
    • 국제초고층학회논문집
    • /
    • 제3권1호
    • /
    • pp.73-79
    • /
    • 2014
  • In recent years, the performance requested for which an ultra-high rise buildings is diversified. Large spans are designed in order to gain wide workspace. Column positions are shifted in middle stories to provide space different from neighboring floors. Moreover, in the bottom layers of the building, it is becoming more important to expand freedom to plan flexibility such as creating publically opened wide atria that gives attractive free space. Earthquake-proof criteria is also changing not only human life protection deign but also a design that allows functional continuity. In order to achieve thee needs, as one of technology, we have developed ultra-high strength concrete filled tubular (CFT) columns of the box section that combine ultra-high strength concrete with specified strength of $150N/mm^2$ and ultra-high strength steel material with tensile strength of $780N/mm^2$. In this paper, the outline of development of an ultra-high strength CFT column is reported. Also, the structural design of the ultra-high-rise building using the CFT columns is reported.

BWIM시스템의 현장 적용성 및 영향인자에 관한 연구 (A Study on Influencing Factors in BWIM System and Its Field Applicability)

  • 유동균;경갑수;이성진;이희현;전준창
    • 한국강구조학회 논문집
    • /
    • 제26권4호
    • /
    • pp.251-262
    • /
    • 2014
  • BWIM에서 중량 추정결과에 영향을 미치는 것으로는 변형률 응답파형과 관계가 있는 차량 주행특성, 교량특성 및 계측조건을 고려할 수 있다. 이 연구에서는 이들 영향인자가 BWIM에 의한 차량 정보추정에 미치는 정도를 평가하고자 이론적인 연구 및 현장실측을 실시하였다. 이러한 평가를 통하여 BWIM에 의한 차량정보추정에서의 정밀도 향상을 위한 방안을 제시하고자 한다. 연구결과, 교량의 거더형식, 경간의 연속유무에 따른 차량정보추정의 차이는 거의 없는 것으로 나타났다. 그러나 교량의 평면형상 때문에 사교가 직교보다 높은 오차율을 나타내었다. 또한 차량의 주행속도는 2축과 3축사이의 간격이 짧은 축간거리의 산정에는 큰 영향을 미치지만, 총중량 추정에는 영향이 거의 없는 것으로 나타났다.

선로특성이 능동제어 자기부상열차의 주행성에 미치는 영향 (Effect of Guideway Characteristics on Runnability of Actively Controlled Maglev Vehicle)

  • 이준석;김문영;권순덕;여인호
    • 대한토목학회논문집
    • /
    • 제29권2D호
    • /
    • pp.295-303
    • /
    • 2009
  • 본 연구에서는 가이드웨이의 특성이 중저속 자기부상열차의 주행성에 미치는 영향을 파악하는데 목적을 두고 있다. 이를 위하여 자기 공극의 피드백을 포함한 2자유도 차량에 대한 운동방정식을 구성하고, 최적능동제어기법을 적용하여 수치해석을 수행하였다. 매개변수 연구로 차량 속도, 레일조도, 교량 처짐, 경간의 연속성, 경간장 등이 UTM-01 자기부상열차의 응답에 미치는 영향을 파악하였다. 해석 결과를 보면, 차량 설계속도 내에서는 차량의 응답이 크게 증가하지 않고 일정한 수준을 유지하였으며, 차량의 응답은 주로 가이드웨이 처짐에 의하여 지배를 받은 것으로 나타났다. 결론적으로 차량 공극의 변화를 줄여서 주행성을 향상시키려면 가이드웨이의 최대 처짐을 작게 하고, 단순거더 보다는 연속거더 구조로 구성하는 것이 유리한 것으로 나타났다.