• Title/Summary/Keyword: continental climate

Search Result 89, Processing Time 0.029 seconds

Prediction of the Spawning Ground of Todarodes pacificus under IPCC Climate A1B Scenario (IPCC 기후변화 시나리오(A1B)에 따른 살오징어(Todarodes pacificus) 산란장의 변동 예측)

  • Kim, Jung-Jin;Min, Hong-Sik;Kim, Cheol-Ho;Yoon, Jin-Hee;Kim, Su-Am
    • Ocean and Polar Research
    • /
    • v.34 no.2
    • /
    • pp.253-264
    • /
    • 2012
  • In the northwestern Pacific, spawning of the common squid, Todarodes pacificus, occurs at continental shelf and slope areas of 100-500 m, and the optimum temperature for the spawning and survival of paralarvae is assumed to be $18-23^{\circ}C$. To predict the spawning ground of Todarodes pacificus under future climate conditions, we simulated the present and future ocean circulations, using an East Asia regional ocean model (Modular Ocean Model, MOM version3), projected by two different global climate models (MPI_echam5, MIROC_hires), under an IPCC SRES A1B emission scenario. Mean climate states for 1990-1999 and 2030-2039 from 20th and 21th Century Climate Change model simulation (from the IPCC 4th Assessment Report) were used as surface conditions for simulations, and we examined changes in spawning ground between the 1990s and 2030s. The results revealed that the distribution of spawning ground in the 2030s in both climate models shifted northward in the East China Sea and East Sea, for both autumn and winter populations, compared to that of the 1990s. Also, the spawning area (with $1/6^{\circ}{\times}1/6^{\circ}$ grid) in the 2030s of the autumn and winter populations will decline by 11.6% (MPI_echam5) to 30.8% (MIROC_hires) and 3.0% (MPI_echam5) to 18.2% (MIROC_hires), respectively, from those of the 1990s.

Origin of Sandstone Fragments Within Core Sediments Obtained from Southwestern Continental Shelf of the Ulleung Basin, East Sea (동해 울릉분지 남서부 대륙붕에서 채취된 시추퇴적물내 사암편의 기원)

  • Lee, Eui-Hyeong;Lee, Yong-Kuk;Shin, Dong-Hyeok;Huh, Sik;Kim, Seong-Ryul;Jeong, Baek-Hoon;Han, Sang-Joon;Chun, Jong-Hwa
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.3
    • /
    • pp.126-134
    • /
    • 2001
  • Several angular sandstone fragments (about 7 cm in longest diameter) occur in two piston cores, obtained from the submarine trough in the northeastern part of Korea Strait. The origin of the sandstone fragments and the paleoenvironment of trough sediment could be suggested from sedimentary facies analysis of cores and identification of ostracod within sandstone fragments. Echo characteristics around two core sites in submarine trough represent the prolonged bottom echoes with diffuse or no subbottom reflectors. The cores consist of a lower bioturbated mud and an upper gravelly sand sediments with sandstone/shell fragments. The bioturbated mud sediments show low water contents (27-44%) and high shear strength (19.2->37 kPa) compared with those of Holocene sediments (60-219% and 1.0-2.7 kPa, respectively) in the inner shelf and continental slope. However, clay contents (48-56%) of the bioturbated mud sediments are similar to those of fluviatile Holocene sediments in the inner shelf. The mean grain size of gravelly sand sediments ranges from 2.3 to 3.0 ${\phi}$ and shows coarsening upward with sandstone/shell fragments. The Holocene palimpsest in the continental shelf are composed of muddy sand sediments or sandy mud sediments (mean grain size: 4.6-7.6 ${\phi}$). Those suggest that two core sediments might be formed from Paleofluvial and paleocoastal deposits during sea-level lowstand. However, sandstone fragments mainly consist of quartz grains and bioclasts, with carbonate matrix, hollow pore, and glauconite. Two extinct ostracod species, Normanicythere sp. and Kotoracythere sp., are recovered in the sand-stone fragments of core EP-7, and they continued to exist from late Pliocene to early Pleistocene in cold water environment of this area. Thus, the sandstone fragments are interpreted to be formed at the paleocoastal environment derived from the Plio-Pleistocene outcrops exposed around the submarine trough during the LGM (Last Glacial Maximum) period.

  • PDF

Urban Thermo-profiles and Community Structure of Quercus mongolica Forests along an Urban-rural Land Use Gradient: Implications for Management and Restoration of Urban Ecosystems

  • Cho, Yong-Chan;Cho, Hyun-Je;Lee, Chang-Seok
    • Journal of Ecology and Environment
    • /
    • v.32 no.3
    • /
    • pp.167-176
    • /
    • 2009
  • Land cover changes associated with urbanization have driven climate change and pollution, which alter properties of ecosystems at local, regional, and continental scales. Thus, the relationships among urban ecological variables such as community composition, structure, health, soil and functioning need to be better understood to restore and improve urban ecosystems. In this study, we discuss urban ecosystem management and research from a futuristic perspective based on analyses of vegetation structure, composition, and successional trends, as well as the chemical properties of soils and the distribution of heat along an urban-rural gradient. Urban thermo-profile analysis using satellite images showed an obvious mitigating effect of vegetation on the Seoul heat island. Community attributes of Quercus mongolica stands reflected the effects of urbanization, such as pronounced increases in disturbance-related and pollution-tolerant species, such as Styrax japonica and Sorbus alnifolia. Retrogressive successional trends were detected in urban sites relative to those in rural sites. Changes in the urban climate and biotic environment have the potential to significantly influence the practice and outcomes of ecological management, restoration and forecasting because of the associated changes in future bio-physical settings. Thus, for management (i.e., creation and restoration) of urban green spaces, forward-thinking perspectives supported by historical information are necessary.

The timing of unprecedented hydrological drought under climate change

  • Yusuke Satoh;Hyungjun Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.48-48
    • /
    • 2023
  • The intensified droughts under climate change are expected to threaten stable water resource availability. Droughts exceeding the magnitude of historical variability could occur increasingly frequently under future climate conditions. It is crucial to understand how drought will evolve over time because the assumption of hydrological stationarity of the past decades would be inappropriate for future water resources management. However, the timing of the emergence of unprecedented drought conditions under climate change has rarely been examined. Here, using multimodel hydrological simulations, we investigate the changes in the frequency of hydrological drought (defined as abnormally low river discharge) under high and low greenhouse gas concentration scenarios and with existing water resources management and estimate the timing of the first emergence of unprecedented regional drought conditions that persist for over several consecutive years. This new metric enables a new quantification of the urgency of adaptation and mitigation with regard to drought under climate change. The times are detected for several sub-continental-scale regions, and three regions, namely, southwestern South America, Mediterranean Europe, and northern Africa, exhibit particularly robust and earlier critical times under the high-emission scenario. These three regions are expected to confront unprecedented conditions within the next 30 years with a high likelihood, regardless of the emission scenarios. In addition, the results obtained herein demonstrate the benefits of the lower-emission pathway in reducing the likelihood of emergence. The Paris Agreement goals are shown to be effective in reducing the likelihood to the unlikely level in most regions. Nevertheless, appropriate and prior adaptation measures are considered indispensable to when facing unprecedented drought conditions. The results of this study underscore the importance of improving drought preparedness within the considered time horizons.

  • PDF

Spaceborne Gravity Sensors for Continental Hydrology and Geodynamic Studies

  • Shum C. K.;Han Shin-Chan;Braun Alexander
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.1
    • /
    • pp.51-57
    • /
    • 2005
  • The currently operating NASA/GFZ Gravity Recovery and Climate Experiment (GRACE) mission is designed to measure small mass changes over a large spatial scale, including the mapping of continental water storage changes and other geophysical signals in the form of monthly temporal gravity field. The European Space Agency's Gravity field and steady state Ocean Circulation Explorer (GOCE) space gravity gradiometer (SGG) mission is anticipated to determine the mean Earth gravity field with an unprecedented geoid accuracy of several cm (rms) with wavelength of 130km or longer. In this paper, we present a summary of present GRACE studies for the recovery of hydrological signals in the Amazon basin using alternative processing and filtering techniques, and local inversion to enhance the temporal and spatial resolutions by two-folds or better. Simulation studies for the potential GRACE detection of slow deformations due to Nazca-South America plate convergence and glacial isostatic adjustment (GIA) signals show that these signals are at present difficult to detect without long-term data averaging and further improvement of GRACE measurement accuracy.

The effect of typhoon translation speed and landfall angle on the maximum surge height along the coastline

  • Qian, Xiaojuan;Son, Sangyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.153-153
    • /
    • 2021
  • Storm Storm event is one of major issues in South Korea due to devastating damage at its landfall. A series of statistical study on the historical typhoon records consistently insist that the typhoon translation speed (TS) is on slowdown trend annually, and thus provides an urgent topic in assessing the extreme storm surge under future climate change. Even though TS has been regarded as a principal contributor in storm surge dynamics, only a few studies have considered its impact on the storm surge. The landfall angle (LA), another key physical factor of storm surge also needs to be further investigated along with TS. This study aims to elucidate the interaction mechanism among TS, LA, coastal geometry, and storm surge synthetically by performing a series of simulations on the idealized geometries using Delft3D FM. In the simulation, various typhoons are set up according to different combinations of TS and LA, while their trajectories are assumed to be straight with the constant wind speed and the central pressure. Then, typhoons are subjected to make landfall over a set of idealized geometries that have different depth profiles and layouts (i.e., open coasts or bays). The simulation results show that: (i) For the open coasts, the maximum surge height (MSH) increases with increasing TS. (ii) For the constant bed level, a typhoon normal to the coastline resulted in peak MSH due to the lowest effect of the coastal wave. (iii) For the continental shelf with different widths, the slow-moving typhoon will generate the peak MSH around a small LA as the shelf width becomes narrow. (iv) For the bay, MSH enlarges with the ratio of L/E (the length of main-bay axis /gate size) dropping, while the greatest MSH is at L/E=1. These findings suggest that a fast-moving typhoon perpendicular to the coastline over a broad continental shelf will likely generate the extreme storm surge hazard in the future, as well as the slow-moving typhoon will make an acute landfall over a narrow continental shelf.

  • PDF

Analysis of Seasonal Characteristics about Long-Range Transport and Deposition of Sulfur (황(S)의 장거리 이동 및 침적량에 대한 계절별 특성 분석)

  • Hong, Sung-Chul;Lee, Jae-Bum;Moon, Kyung-Jung;Song, Chang-Keun;Bang, Cheol-Han;Choi, Jin-Young;Kim, Jeong-Soo;Hong, You-Deog
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.1
    • /
    • pp.34-47
    • /
    • 2010
  • Long-range transport of air pollutants was simulated using Comprehensive Acid Deposition Model (CADM) and Yonsei University-Sulfuric Acid Deposition Model (YU-SADM). For the simulation, weather patterns that represent the four seasons were derived through a clustering analysis with 5-years of meteorological data. The simulation result showed that in spring, influenced by strong low pressure from China, air pollutants of moved to the Korean Peninsula. In summer, humid air moved into the Korean Peninsula across the Yellow Sea while the north pacific high pressure extended, making the concentration of air pollutants lower than that in the other seasons. In autumn, air pollutants were transported by the northwest wind caused by the movement of high pressure over the Yellow Sea, while in winter air pollutants were influenced by northwest winds from continental highs. The amount of air pollutants in each season showed that high amount of pollutants were transported in winter due to the strong northwest wind. The in-flows were 3 to 8 times higher than those of the other seasons, and out-flows were about as twice as high. The amount of wet deposition in summer and autumn increased significantly compared to the amount in the other seasons due to the increase of rainfall. Source-receptor relationship analysis for sulfur showed that 70 to 91 precent of the total deposition came from the self-contribution by the Korean Peninsula. In winter, contribution from China was about 25 percent of the total deposition which was higher amount than any other season.

Different Climate Regimes Over the Coastal Regions of the Eastern Antarctic Ice Sheet

  • Cunde, Xiao;Dahe, Qin;Zhongqin, Li;Jiawen, Ren;Allison, Ian
    • Ocean and Polar Research
    • /
    • v.24 no.3
    • /
    • pp.227-236
    • /
    • 2002
  • For ten firn cores, from both the eastern and the western side of Lambert Glacier basin (LGB), snow accumulation rate and isotopic temperature were measured far the recent 50 years. Results show that snow accumulation for five cores over the eastern side of LGB (GC30, GD03, GD15, DT001, and DT085) at Wilks Land and Princess Elizabeth Land increases, whereas it decreases at the western side (Core E, DML05, W200, LGB 16, and MGA) at Dronning Maud Land, Mizuho Plateau and Kamp Land. For the past decades, the increasing rate was $0.34-2.36kg\;m^{-2}a^{-1}$ at the eastern side and the decreasing rate was $-0.01\;-\;-2.36kg\;m^{-2}\;a^{-1}$ at the western side. Temperatures at the eastern LGB were also increased with the rate of $0.02%o\;a^{-l}$. At the western LGB it was difficult to see clear trends, which were confirmed by Instrumental temperature records at coastal stations. Although statistic analysis and modeling results display that both surface temperature and accumulation rate has increased trends in Antarctic ice sheet during 1950-2000, the regional distributions were much more different for different geographic areas. We believe that ice-core records at Wilks Land and Princess Elizabeth Land reflect the real variations of SST and moisture change in the southern India Ocean. For the Kamp Land and Dronning Maud Land, however circulation pattern was different, by which the climate was more complicated. The International Trans-Antarctic Scientific Expedition (ITASE) aimed to reveal an overall spatial pattern of climate change over Antarctic ice sheet for the past 200 years. This study points the importance of continental to regional circulation to annual-decadal scale climate change in Antarctica.

The KALION Automated Aerosol Type Classification and Mass Concentration Calculation Algorithm (한반도 에어로졸 라이다 네트워크(KALION)의 에어로졸 유형 구분 및 질량 농도 산출 알고리즘)

  • Yeo, Huidong;Kim, Sang-Woo;Lee, Chulkyu;Kim, Dukhyeon;Kim, Byung-Gon;Kim, Sewon;Nam, Hyoung-Gu;Noh, Young Min;Park, Soojin;Park, Chan Bong;Seo, Kwangsuk;Choi, Jin-Young;Lee, Myong-In;Lee, Eun hye
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.2
    • /
    • pp.119-131
    • /
    • 2016
  • Descriptions are provided of the automated aerosol-type classification and mass concentration calculation algorithm for real-time data processing and aerosol products in Korea Aerosol Lidar Observation Network (KALION, http://www.kalion.kr). The KALION algorithm provides aerosol-cloud classification and three aerosol types (clean continental, dust, and polluted continental/urban pollution aerosols). It also generates vertically resolved distributions of aerosol extinction coefficient and mass concentration. An extinction-to-backscatter ratio (lidar ratio) of 63.31 sr and aerosol mass extinction efficiency of $3.36m^2g^{-1}$ ($1.39m^2g^{-1}$ for dust), determined from co-located sky radiometer and $PM_{10}$ mass concentration measurements in Seoul from June 2006 to December 2015, are deployed in the algorithm. To assess the robustness of the algorithm, we investigate the pollution and dust events in Seoul on 28-30 March, 2015. The aerosol-type identification, especially for dust particles, is agreed with the official Asian dust report by Korean Meteorological Administration. The lidar-derived mass concentrations also well match with $PM_{10}$ mass concentrations. Mean bias difference between $PM_{10}$ and lidar-derived mass concentrations estimated from June 2006 to December 2015 in Seoul is about $3{\mu}g\;m^{-3}$. Lidar ratio and aerosol mass extinction efficiency for each aerosol types will be developed and implemented into the KALION algorithm. More products, such as ice and water-droplet cloud discrimination, cloud base height, and boundary layer height will be produced by the KALION algorithm.

Interrelationship between Paleovegetation in Southern and Central California and Northeast Pacific Atmospheric and Oceanographic Processes over the Last ~30 kyr (과거 3만년 동안 캘리포니아 남부와 중부지역의 고식생 변화와 북동태평양 대기 및 해양순환 변동과의 연관성 연구)

  • Suh, Yeon Jee
    • Ocean and Polar Research
    • /
    • v.41 no.3
    • /
    • pp.159-168
    • /
    • 2019
  • Understanding the interaction between climate and the water cycle is critical especially in a drought sensitive region such as California. This study explored hydrologic changes in central and southern California in relation to the glacial-interglacial climate cycles over the last 30 thousand years. To do this, we reconstructed paleovegetation using plant wax carbon isotopic compositions (${\delta}^{13}C$) preserved in marine sediment cores retrieved from the central California continental shelf (ODP Site 1018) and Santa Barbara Basin (ODP Site 893A). The results were then compared to the existing sea surface temperature (SST) and pollen records from the same cores to understand terrestrial hydrology in relation to oceanographic processes. The Last Glacial was generally dry both in central and southern California, indicated by grassland expansion, confirming the previously suggested notion that the westerly storm track that supplies the majority of the precipitation in California may not have moved southward during the glacial period. Southern California was drier than central California during the Last Glacial Maximum (LGM). This drying trend may have been associated with the weakening of the California Current and northerly winds leading to the early increase in SST in southern California and decline in both offshore and coastal upwelling. The climate was wetter during the Holocene in both regions compared to the glacial period and forest coverage increased accordingly. We attribute this wetter condition to the precipitation contribution increase from the tropics. Overall, we found a clear synchronicity between the terrestrial and marine environment which showed that the terrestrial vegetation composition in California is greatly affected by not only the global climate states but also regional oceanographic and atmospheric conditions that regulate the timing and amount of precipitation over California.