• Title/Summary/Keyword: context dependent error

Search Result 12, Processing Time 0.025 seconds

Improved Decision Tree-Based State Tying In Continuous Speech Recognition System (연속 음성 인식 시스템을 위한 향상된 결정 트리 기반 상태 공유)

  • ;Xintian Wu;Chaojun Liu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.49-56
    • /
    • 1999
  • In many continuous speech recognition systems based on HMMs, decision tree-based state tying has been used for not only improving the robustness and accuracy of context dependent acoustic modeling but also synthesizing unseen models. To construct the phonetic decision tree, standard method performs one-level pruning using just single Gaussian triphone models. In this paper, two novel approaches, two-level decision tree and multi-mixture decision tree, are proposed to get better performance through more accurate acoustic modeling. Two-level decision tree performs two level pruning for the state tying and the mixture weight tying. Using the second level, the tied states can have different mixture weights based on the similarities in their phonetic contexts. In the second approach, phonetic decision tree continues to be updated with training sequence, mixture splitting and re-estimation. Multi-mixture Gaussian as well as single Gaussian models are used to construct the multi-mixture decision tree. Continuous speech recognition experiment using these approaches on BN-96 and WSJ5k data showed a reduction in word error rate comparing to the standard decision tree based system given similar number of tied states.

  • PDF

Minimizing Estimation Errors of a Wind Velocity Forecasting Technique That Functions as an Early Warning System in the Agricultural Sector (농업기상재해 조기경보시스템의 풍속 예측 기법 개선 연구)

  • Kim, Soo-ock;Park, Joo-Hyeon;Hwang, Kyu-Hong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.2
    • /
    • pp.63-77
    • /
    • 2022
  • Our aim was to reduce estimation errors of a wind velocity model used as an early warning system for weather risk management in the agricultural sector. The Rural Development Administration (RDA) agricultural weather observation network's wind velocity data and its corresponding estimated data from January to December 2020 were used to calculate linear regression equations (Y = aX + b). In each linear regression, the wind estimation error at 87 points and eight time slots per day (00:00, 03:00, 06:00, 09.00, 12.00, 15.00, 18.00, and 21:00) is the dependent variable (Y), while the estimated wind velocity is the independent variable (X). When the correlation coefficient exceeded 0.5, the regression equation was used as the wind velocity correction equation. In contrast, when the correlation coefficient was less than 0.5, the mean error (ME) at the corresponding points and time slots was substituted as the correction value instead of the regression equation. To enable the use of wind velocity model at a national scale, a distribution map with a grid resolution of 250 m was created. This objective was achieved b y performing a spatial interpolation with an inverse distance weighted (IDW) technique using the regression coefficients (a and b), the correlation coefficient (R), and the ME values for the 87 points and eight time slots. Interpolated grid values for 13 weather observation points in rural areas were then extracted. The wind velocity estimation errors for 13 points from January to December 2019 were corrected and compared with the system's values. After correction, the mean ME of the wind velocities reduced from 0.68 m/s to 0.45 m/s, while the mean RMSE reduced from 1.30 m/s to 1.05 m/s. In conclusion, the system's wind velocities were overestimated across all time slots; however, after the correction model was applied, the overestimation reduced in all time slots, except for 15:00. The ME and RMSE improved b y 33% and 19.2%, respectively. In our system, the warning for wind damage risk to crops is driven by the daily maximum wind speed derived from the daily mean wind speed obtained eight times per day. This approach is expected to reduce false alarms within the context of strong wind risk, by reducing the overestimation of wind velocities.