• 제목/요약/키워드: content-based filtering

검색결과 227건 처리시간 0.029초

추천시스템을 위한 내용기반 필터링과 협력필터링의 새로운 결합 기법 (A New Approach Combining Content-based Filtering and Collaborative Filtering for Recommender Systems)

  • 김병만;이경;김시관;임은기;김주연
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권3호
    • /
    • pp.332-342
    • /
    • 2004
  • 엄청난 속도로 증가하고 있는 정보의 홍수 시대에서는 정보들을 선별하기 위하여 정보 필터링기법이 필요하다. 정보 필터링은 내용 기반 방법과 협력에 의한 방법으로 분류할 수 있다. 내용 기반 기법에서는 내용에 기반을 두어 정보를 추출하는 반면 협력 기법은 다른 사람들의 의견을 이용하게 된다. 본 논문에서는 기존 협력 필터링 방법의 문제점을 해결하기 위한 방법의 일환으로 내용 기반 기법과 협력 기법을 보다 유기적으로 결합시키는 연구를 수행하였다. 이를 위해 협력 필터링 틀을 그대로 유지하면서 사용자 프로파일을 효과적으로 이용하는 방법을 제안하였다. 또한, 본 논문에서 제시한 기법을 실험적으로 분석하고 기존의 필터링 기법과 비교하였다. 실험 결과, 본 방법이 예측 질 면에서 상당한 성능 향상이 있었고 새로운 사용자에게도 보다 나은 추천을 할 수 있음을 알 수 있었다.

Combining Collaborative, Diversity and Content Based Filtering for Recommendation System

  • Shrestha, Jenu;Uddin, Mohammed Nazim;Jo, Geun-Sik
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2007년도 추계학술대회
    • /
    • pp.602-609
    • /
    • 2007
  • Combining collaborative filtering with some other technique is most common in hybrid recommender systems. As many recommended items from collaborative filtering seem to be similar with respect to content, the collaborative-content hybrid system suffers in terms of quality recommendation and recommending new items as well. To alleviate such problem, we have developed a novel method that uses a diversity metric to select the dissimilar items among the recommended items from collaborative filtering, which together with the input when fed into content space let us improve and include new items in the recommendation. We present experimental results on movielens dataset that shows how our approach performs better than simple content-based system and naive hybrid system

  • PDF

기존 영화 추천시스템의 문헌 고찰을 통한 유용한 확장 방안 (A Prospective Extension Through an Analysis of the Existing Movie Recommendation Systems and Their Challenges)

  • ;;;이경현
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제12권1호
    • /
    • pp.25-40
    • /
    • 2023
  • 추천 시스템은 지능적인 자동 결정을 생성하기 위해 사용자가 자주 사용한다. 영화 추천 시스템의 연구에서, 기존 접근 방식은 협업 및 콘텐츠 기반 필터링 기술을 사용한다. 협업 필터링은 사용자 유사성을 고려하는 반면, 콘텐츠 기반 필터링은 단일 사용자의 활동에 중점을 두고 있다. 또한 협업 필터링과 콘텐츠 기반 필터링을 결합한 혼합 필터링 접근법은 서로의 한계를 보완하기 위해 사용되고 있다. 최근엔 더 나은 추천 서비스를 제공하기 위해 사용자 간의 유사성을 찾는데 몇 가지 AI 기반 유사성 기법을 사용하고 있다. 본 논문은 기존의 다양한 영화 추천 시스템과 문제점 분석을 통해 가능한 해결책을 도출하여 유용한 확장 방안을 제공하는 것을 목표로 한다.

내용 기반 여과와 협력적 여과의 병합을 통한 추천 시스템에서 조화 평균 가중치 (Harmonic Mean Weight by Combining Content Based Filtering and Collaborative Filtering in a Recommender System)

  • 정경용;류중경;강운구;이정현
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권3_4호
    • /
    • pp.239-250
    • /
    • 2003
  • 전자 상거래 분야에서 증가하고 있는 정보들 중에 사용자가 자신의 기호에 맞는 정보 만들 만을 선택하기 위해서 각 정보를 일일이 검토하기 어려운 일이다. 이를 보완하기 위해 정보 여과 기술이 사용되는데 최근 추천 시스템은 협력적 여과 시스템의 희박성과 초기 평가 문제를 해결하기 위해서 내용 기반 여과 시스템과 협력적 적과 시스템을 병합하늘 방법을 사용한다. 본 논문에서는 혼합형 추천시스템에서의 예측의 정확도를 향상시키기 위해서 조화 평균 가중치(CBCF_harmonic_mean)를 사용자 유사도 가중치를 구할 때 사용한다. 내용 기반의 성능을 고려하여 임계치 값을 45로 설정한 후, n/45의 Significance weight을 사용자 유사도 가중치에 적용한다. 제안된 방법의 성능을 평가하기 위해서 기존의 협력적 여과 시스템과 내용 기반 여과 시스템을 병합한 방법과 비교 평가하였다. 그 결과 기존의 협력적 여과 시스템의 문제점을 해결하여 예측의 정확도를 높이는데 효과적임을 확인하였다.

내용 기반 협력적 여과 시스템에서 사용자 프로파일을 이용한 자동 선호도 평가 (Automatic Preference Rating using User Profile in Content-based Collaborative Filtering System)

  • 고수정;최성용;임기욱;이정현
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권8호
    • /
    • pp.1062-1072
    • /
    • 2004
  • 협력적 여과 시스템은 {사용자-문서}의 행렬을 기반으로 사용자에게 웹 문서를 추천하는 데 있어서 효율적인 시스템이다. 그러나 협력적 여과 시스템은 초기 평가 문제와 희박성으로 인하여 추천의 정확도가 저하된다는 단점을 갖는다. 본 논문에서는 협력적 여과 시스템의 희박성과 초기 평가 문제를 해결하기 위하여 사용자 프로파일을 생성시킴으로써 자동으로 선호도를 평가하는 방법을 제안한다. 본 논문에서 사용하는 프로파일은 협력적 여과 시스템에서의 {사용자-문서} 행렬을 기반으로 생성된 사용자 프로파일에 내용 기반 여과 시스템에서 연관 피드백을 이용하여 생성한 사용자 프로파일을 상호정보의 방법에 의해 병합함으로써 생성한 내용 기반 협력적 사용자 프로파일이다. 생성한 내용 기반 협력적 사용자 프로파일을 정규화시키고, 정규화한 프로파일을 협력적 여과 시스템의 {사용자-문서} 행렬에 반영함으로써 자동으로 선호도를 평가한다. 제안된 방법은 사용자가 웹 문서에 대해서 선호도를 평가한 데이터베이스에서 평가되었으며, 기존의 방법보다 보다 효율적임을 증명한다.

PICS/RDF 기반 인터넷 내용 등급 시스템 연구: 표현의 자유를 중심으로 (A Study of PICS/RDF-Based Internet Content Rating System: Issues Related to Freedom of Expression)

  • 김유승
    • 정보관리학회지
    • /
    • 제24권3호
    • /
    • pp.271-297
    • /
    • 2007
  • 인터넷의 대중화와 함께, 인터넷의 불법유해정보의 존재는 정부와 인터넷 사용자들에게 큰 근심거리가 된지 오래다. 불법유해정보 문제에 대한 다양한 해법들 중에서, 인터넷 콘텐츠 필터링 기술은 사용자들이 스스로 유해정보 문제에 대처할 수 있도록 개발되어 왔다. 지난 몇 년 사이, 상업 필터링 제품에 대한관심이 높아지고 있다. 부모, 교사, 심지어는 정부 당국도 청소년을 인터넷 유해정보로부터 보호하는 기술적 대안으로써 상업 필터링 제품을 선택하고 있고, 그 시장도 빠르게 성장하고 있다. 하지만 시민단체들을 중심으로 인터넷 콘텐츠 필터링에 대한 비판의 목소리가 높다. 필터링은 기술적 측면에서 태생적인 약점을 가지고 있을 뿐 아니라, 표현의 자유를 위축시키는 결과를 초래할 것이라는 비판이다. 이 논문은 인터넷 콘텐츠 필터링 특히 일세대 필터링과 구분되어 내용등급시스템으로 불리는 PICS/RDF 기반의 라벨 필터링의 기술적 측면을 분석하고 표현의 자유, 사용자 자율성과 관련된 문제들을 살펴봄으로써, 불법유해정보에 대한 기술적 해법의 타당성에 대하여 논하고자 한다.

가중 윈도우를 통한 사용자 이력 기반 추천 시스템 (Weighted Window Assisted User History Based Recommendation System)

  • 황성민;;;김경백
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제4권6호
    • /
    • pp.253-260
    • /
    • 2015
  • 온라인에서 물품을 구매하고자 할 때, 추천 시스템은 사용자에 맞춘 추천을 하게 되며, 사용자가 관심을 가질만한 새로운 물품까지 추천해 준다. Collaborative filtering 등, 여러 모델들이 보다 정확한 추천을 위해 제안되었으며, 활발히 연구되고 있다. 그중 Collaborative filtering은 사용자 선호도를 예측하는 데 좋은 결과를 보여주지만 사용자 개체 및 데이터가 부족한 환경에서는 사용자들끼리의 비교를 힘들게 하여 collaborative filtering이 적용되기 힘들게 한다. 새로 시작하는 시스템이거나 사용자 개체 수가 적은 경우, 문제가 발생하며, 이와 같은 상황에서는 content-based filtering이 사용된다. 하지만 content-based filtering은 비슷한 물건만 추천해주거나, 사용자 성향 변화를 제대로 반영하지 못하는 등의 여러 단점을 가지고 있다. 이러한 한계점들을 극복하기 위해서 사용자 구매 기록에 가중 윈도우를 적용하고, 사용자 구매 기록 분석을 통한 윈도우 가중치 조정을 수행하는 시스템을 제안한다. 사용자 성향의 변화에 민감하게 반응할 수 있고, 이를 기반으로 무의미한 추천을 제거하며, 사용자가 찾기 어려운 관련 물품 추천이 가능한 새로운 상품도 추천하는 시스템을 제시하며, 언급된 사용자 개체 및 데이터가 부족한 환경에서의 동작을 검증하기 위해, 스타트업 무역업체에서 제공된 상품정보 기반 실험을 통해 제안된 시스템의 동작을 검증하였다.

협업적 여과와 다양성, 내용기반 여과를 혼합한 추천 시스템 (Combining Collaborative, Diversity and Content Based Filtering for Recommendation System)

  • Shrestha, Jenu;Uddin, Mohammed Nazim;Jo, Geun-Sik
    • 지능정보연구
    • /
    • 제14권1호
    • /
    • pp.101-115
    • /
    • 2008
  • 일반적으로 혼합 추천 시스템(hybrid recommender system)이란 협업적 여과 방법(collaborative filtering)을 다른 기술들과 결합하여 사용하여 사용자가 원하는 정보를 손쉽게 찾을 수 있도록 도와주는 시스템이다. 협업적 여과 방법과 결합된 혼합 시스템은 대체로 내용이 유사한 아이템들이 추천 되어 전반적인 아이템 추천 성능 및 새로이 추가된 아이템에 대한 추천의 질이 떨어지는 문제가 있다. 이러한 문제를 해결하기 위해, 본 논문에서는 다양성(diversity)을 고려한 새로운 혼합 추천 시스템을 제안한다. 제안된 시스템에서는 첫 번째 단계로 협업적 여과 방법으로부터 추천된 아이템들 간의 비유사도를 측정한다. 두 번째 단계로는 첫 번째 단계에선 추천된 비유사도가 높은 아이템들을 내용 기반의 여과 방법(content-based filtering)에 적용하여 새로운 아이템에 대한 추천 성능을 향상 시킨다. 제안된 방법의 성능 평가를 위해 movielens 데이터를 이용하여 기존의 내용기반 추천 시스템 및 단순 혼합 시스템과 비교 평가하였다. 실험 결과 제안된 방법이 내용기반 추천 시스템 및 단순 혼합시스템보다 높은 추천 성능을 보였다.

  • PDF

강화 학습 알고리즘을 통한 하이브리드 필터링 이미지 추천 시스템 (Reinforcement Learning Algorithm Based Hybrid Filtering Image Recommender System)

  • 심연;신학철;김대기;홍요훈;이필규
    • 한국인터넷방송통신학회논문지
    • /
    • 제12권3호
    • /
    • pp.75-81
    • /
    • 2012
  • 인터넷이 발달하고 접할 수 있는 데이터가 폭증하면서 데이터들에서 사용자는 자신의 기호에 맞는 정보를 찾기가 점점 힘들어 진다. 추천 시스템은 사용자의 기호에 맞는 정보들을 추출하는데 큰 도움을 줄 수 있다. 본 연구는 강화 학습 알고리즘을 기반으로 한 하이브리드 추천 시스템을 사용하여 사용자의 선호도 예측에 대한 정확도를 향상 시켰다. 본 연구는 2000장의 이미지로 테스트를 진행하였다. 테스트 할 때 평균 절대 오차를 구하여 분석한 결과 제안하는 시스템이 협업적 필터링, 내용 기반 필터링, 단순 하이브리드 필터링의 성능보다 더 우수한 것으로 나타났다.

협력적 여과와 내용 기반 여과의 병합을 통한 추천 시스템에서의 사용자 선호도 발견 (Discovery of User Preference in Recommendation System through Combining Collaborative Filtering and Content based Filtering)

  • 고수정;김진수;김태용;최준혁;이정현
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제7권6호
    • /
    • pp.684-695
    • /
    • 2001
  • 최근의 추천 시스템은 협력적 여과 시스템의 희박성과 초기 평가 문제를 해결하기 위하여 내용 기반 여과 시스템과 협력적 여과 시스템을 병합하는 방법을 사용한다. 협력적 여과 시스템은 부가적인 상품을 예측하기 위해 사용자의 선호도에 대한 데이타베이스를 사용한다. 내용 기반 여과 시스템은 상품의 속성과 사용자의 흥미를 대조함에 의해 아이템을 추천한다. 본 논문에서는 두 가지의 기술을 기계 학습 알고리즘에 응용하고 병합함으로써 사용자의 선호도를 발견하는 방법을 기술한다. 제안된 협력적 여과 방법에서는 유전자 알고리즘을 이용하여 Naive Bayes 분류자에 의해 분류된 아이템을 기반으로 사용자 군집을 생성하며 내용 여과 기법에서는 연관 피드백에 의해 사용자의 흥미를 추출함으로써 사용자의 프로파일을 생성한다. 제안된 방법은 웹문서에 대해 사용자가 평가한 데이타베이스에서 평가되며 기존의 방법보다 높은 성능을 나타냄을 보인다.

  • PDF