• Title/Summary/Keyword: content scanning

Search Result 1,030, Processing Time 0.029 seconds

Influence of Water and Surfactants on Wheat Starch Gelatinization and Retrogradation (수분과 계면활성제가 밀전분의 호화와 노화에 미치는 영향)

  • Shin, Mal-Shick
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.116-121
    • /
    • 1991
  • The effects of water contents and surfactants, sodium stearoyl-lactylate, sucrose ester and distilled monoglyceride(Dimodan) on wheat starch gelatinization and retrogradation were studied by differential scanning calorimetry. The endothermic peak patterns of starch varied with water content of starch. When water content was less than 30%, gelatinization did not occur. The onset temperature of gelatinization peak of native starch was $59{\sim}60^{\circ}C$ and that of endothermal peak of retrograded starch was $50{\sim}55^{\circ}C$. The enthalpy value of retrograded starch were greatest in the $40{\sim}50%$ water content. In the presence of surfactants, gelatinization temperatures shifted slightly to higher temperatures. DSC endothermal enthalpies of the amylose-lipid complex increased. The degree of retrogradation in starch was lower with surfactant than without surfactant, but enthalpy of amylose-lipid complex did not change during storage.

  • PDF

Spectrum-Based Color Reproduction Algorithm for Makeup Simulation of 3D Facial Avatar

  • Jang, In-Su;Kim, Jae Woo;You, Ju-Yeon;Kim, Jin Seo
    • ETRI Journal
    • /
    • v.35 no.6
    • /
    • pp.969-979
    • /
    • 2013
  • Various simulation applications for hair, clothing, and makeup of a 3D avatar can provide more useful information to users before they select a hairstyle, clothes, or cosmetics. To enhance their reality, the shapes, textures, and colors of the avatars should be similar to those found in the real world. For a more realistic 3D avatar color reproduction, this paper proposes a spectrum-based color reproduction algorithm and color management process with respect to the implementation of the algorithm. First, a makeup color reproduction model is estimated by analyzing the measured spectral reflectance of the skin samples before and after applying the makeup. To implement the model for a makeup simulation system, the color management process controls all color information of the 3D facial avatar during the 3D scanning, modeling, and rendering stages. During 3D scanning with a multi-camera system, spectrum-based camera calibration and characterization are performed to estimate the spectrum data. During the virtual makeup process, the spectrum data of the 3D facial avatar is modified based on the makeup color reproduction model. Finally, during 3D rendering, the estimated spectrum is converted into RGB data through gamut mapping and display characterization.

Studies on Thickness Swelling Mechanism of Wood Particle-Polypropylene Fiber Composite by Scanning Electron Microscopy

  • Lee, Chan Ho;Cha, Jae Kyung;Eom, Young Geun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.48-58
    • /
    • 2002
  • This study was carried out through scanning electron microscopy to elucidate the mechanism of thickness swelling in wood particle-polypropylene composite which is a typical way of using wood and plastic materials. For this purpose, control particleboards and nonwoven web composites from wood particle and polypropylene fiber formulations of 100:0, 70:30, 60:40, and 50:50 were manufactured at target density levels of 0.5, 0.6, 0.7, and 0.8 g/cm3. Their water absorption and thickness swelling were tested according to ASTMD 1037-93 (1995). To elucidate thickness swelling mechanism of composite through the observation of morphological change of internal structures, the specimens before and after thickness swelling test by 24-hour immersion in water were used in scanning electron microscopy. From the scanning electron microscopy, thickness swelling of composite was thought to be caused by the complicated factors of degree of built-up internal stresses by mat compression and/or amount of wood particles encapsulated with molten polypropylene fibers during hot pressing. In the composites with wood particle contents of 50 to 60% at target densities of 0.5 to 0.8 g/cm3 and with wood particle content of 70% at target densities of 0.5 to 0.7 g/cm3, thickness swellings seemed to be largely dependent upon the restricted water uptake by encapsulated wood particles with molten polypropylene fibers. Thickness swelling in the composite with wood particle content of 70% at target density of 0.8 g/cm3, however, was thought to be principally dependent upon the increased springback phenomenon by built-up internal stresses of compressed mat.

A SIMPLED MODEL FOR HIGHER ORDER SCANNING CURVES IN THE SOIL WATER CHARACTERISTIC FUNCTION (토양수분 특성함수의 고차 SCANNING 커브에 대한 간략한 모델)

  • 정상옥
    • Water for future
    • /
    • v.21 no.2
    • /
    • pp.193-201
    • /
    • 1988
  • A simplified model for higher order scanning curves in the soil water characteristic function is suggested. The conceptual hysteresis models developed by $Mualem_{8,9}$ are simplied for higher order scanning curves. Higher order drying curves are regarded as primary drying curves and the last wetting reversal point is assumed to be on the main wetting curve by moving that point vertically downward. For the higher order wetting curves, it is assumed that these curves can be regarded as primary curves and the last wetting reversal point sits on the imaginary main drying curve which passes through the last wetting reversal point. The water content computed from the simplified model are compared with those obtained from Mualem's original model for second order scanning curves. It is found that absolute differences between the two methods aree relatively small and the simplified model always underestimates for higher order drying curves while it overestimates for higher order wetting curves. Hence, those two tend to compensate each other for repeated drying-wetting processes. The simplified model approximates higher order scanning curves well and reduces computation considerably.

  • PDF

Adhesion Characteristics and Anatomic Scanning of Plywood Bonded by High Density Polyethylene (고밀도 폴리에틸렌으로 접착한 합판의 접착성질과 해부학적 관찰)

  • Han, Kie-Sun;Lee, Hwa-Hyoung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.16-23
    • /
    • 1997
  • This study was carried out to discuss feasibility of high density polyethylene(HDPE) as a new substitute for the conventional adhesives in plywood manufacture. Plywood was composed of radiata pine(Pinus radiata) and Malas(Homallium feotidium) veneers and bonded by HDPE. Adhesion characteristics and anatomical scanning has been examined through tensile-shear strength test and scanning electron microscopy(SEM). The results are as follows; 1. Optimum loading quantity was 15g/$(30.3{\times}30.3)cm^2$, and tensile-shear strength increased with the increase of loading quantity. 2. Even at the hot pressing time of 1 minute, tensile-shear strength met the value of KS(over the 7.5kgf/$cm^2$), and tensile-shear strength increased with the increase of hot pressing time. 3. Plywood composed of veneer at moisture content of 19.6% showed similar tensile-shear strength to that at air conditioned moisture content of 11.4%. 4. Under the same condition of hot pressing time, tensile-shear strength of plywood bonded by HDPE met the KS value of boil and wet test and proved the same group as phenol formaldehyde adhesive. 5. HDPE films showed mechanical adhesion through penetration into the lathe check and ray of veneer.

  • PDF

Microstructure and Antioxidative Activity of Red, White and Extruded Ginseng

  • Ryu, Gi-Hyung
    • Preventive Nutrition and Food Science
    • /
    • v.11 no.1
    • /
    • pp.61-66
    • /
    • 2006
  • The objective of this study was to compare the color and microstructure of powder, redness, brownness, and antioxidative activity in extruded ginseng, white ginseng and red ginseng extracts. The colors of extruded dry ginseng powder (moisture content 30%, barrel temperature $110^{\circ}C$, and screw speed 200 rpm) were similar to those of red ginseng. Intact cell wall structure was examined in dried root ginseng at $70^{\circ}C$ (A), white ginseng with skin (D), white ginseng without skin (E), and red ginseng (F) under a scanning electron microscope. The cell wall was not detected in samples B and C (dry ginsengs extruded with 25% and 30% moisture contents, respectively). Intact starch granules were detected in samples A, D, and E under a scanning electron microscope. Melted starch granules were detected in samples B, C, and F. Colors (L, a, b) of 50% EtOH extracts were similar in samples C and F. Browniness and redness of extracts were high in extruded dry ginseng and red ginseng extracts. Extruded dry ginseng (B) showed higher electron donation ability and phenolic content than the other samples.

Differential Scanning Calorimetric Study of Amylose-lipid Complex and Amylose Content in Rice Starch (쌀 전분의 Amylose-lipid Complex 의 DSC 특성과 Amylose 정량)

  • Ko, Jae-Hyung;Park, Kwan-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.556-561
    • /
    • 1989
  • Thermal properties of amylose-lysolecithin (AL) complex, amylose content and effect of lysolecithin on the gelatinization of rice starch were investigated by Differential Scanning Calorimetry (DSC). The melting temperature of AL complex was near to $108.5^{\circ}C$ and the melting enthalpy was about 1.0cal/g. The gelatinization temperature of rice starch was not affected by adding lysolecithin. However, the enthalpy of gelatinization was decreased. The amylose contents in rice varieties were calculated from melting enthalpy of AL complex. The amylose contents for Indica and Japonica types of rice were in the range of 16-19%, which were in good agreement with those determined by iodine binding method. Significant differences were not observed in the amylose contents between Indica and Japonica varieties.

  • PDF

A STUDY OF CO2 LASER IRRADIATED DENTAL HARD TISSUES USING ELECTRON PROBE MICROANALYZER AND SCANNING ELECTRON MICROSCOPE (CO2레이저 조사가 치아경조직에 미치는 영향에 관한 EPMA분석 및 주사전자현미경적 연구)

  • Chang, Gye-Bong;Lee, Chung-Suck;Lee, Chan-Young;Lee, Seung-Jong
    • Restorative Dentistry and Endodontics
    • /
    • v.12 no.1
    • /
    • pp.51-64
    • /
    • 1986
  • The purpose of this study is to obtain the data of prestep in cavity preparation by observing changed conditions of laser irradiated dental hard tissues. The forty five extracted caries free human molars were divided into three groups and each group into five subgroups. A $CO_2$ laser irradiation was performed each subgroup of group I for one second with output power of 5 W, 10 Wand 20 W. On group II, laser irradiation was done ten times for 0.1 second duration using same power ratings as group I. On group III, laser irradiation was done 0.1 second, 0.2 second and 0.4 second with output power of 50 W. We investigated mineral contents and crater wall of obtained specimens, i.e., laser irradiated teeth, using computer controlled electron probe microanalyzer and scanning electron microscope. The following results were obtained: 1. Both calcium and phosphorus contents in laser irradiated enamel crater wall were increased, and magnesium content was decreased, but these trends were not statistically significant. 2. In laser irradiated dentin, change of mineral content was more significant. 3. In laser irradiated enamel and dentin, there were no significant differences on mineral content change due to irradiation condition and energy density. 4. In scanning electron microscopic study, enamel rods of the crater wall were fused and clefts were observed in parallel with the direction of enamel rod for all groups. 5. In laser irradiated dentin, irregular fusion and clefts were observed. In irradiated teeth with high power and short duration, the locally formed narrow crater wall was observed.

  • PDF

A Study on Morphology and Mechanical Properties of Biodegradable Polymer Nanocomposites (생분해성 고분자 나노복합체의 형태학 및 기계적 특성 연구)

  • Jang, Sang Hee
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.401-409
    • /
    • 2013
  • BBiodegradable polymers have attracted great attention because of the increased environmental pollution by waste plastics. In this study, PLA (polylactic acid)/Clay-20 (Cloisite 20) and PLA (polylactic acid)/PBS (poly(butylene succinate)/Clay-20 (Cloisite 20) nanocomposites were manufactured in a twin-screw extruder. Specimens for mechanical properties of PLA/Clay-20 and PLA/PBS (90/10)/Clay-20 nanocomposites were prepared by injection molding. Thermal, mechanical, morphological and raman spectral properties of two nanocomposites were investigated by differential scanning calorimetry (DSC), tensile tester, scanning electron microscopy (SEM) and raman-microscope spectrophotometer, respectively. In addition, hydrolytic degradation properties of two nanocomposites were investigated by hydrolytic degradation test. It was confirmed that the crystallinity of PLA/Clay-20 and PLA/PBS/Clay-20 nanocomposite was increased with increasing Clay-20 content and the Clay-20 is miscible with PLA and PLA/PBS resin from DSC and SEM results. Tensile strength of two nanocomposites was decreased, but thier elongation, impact strength, tensile modulus and flexural modulus were increased with an increase of Clay-20 content. The impact strength of PLA/Clay-20 and PLA/PBS/Clay-20 nanocomposites with 5 wt% of Clay-20 content was increased above twice than that of pure PLA and PLA/PBS (90/10). The hydrolytic degradation rate of PLA/Clay-20 nanocomposite with 3 wt% of Clay-20 content was accelerated about twice than that of pure PLA. The reason is that degradation may occur in the PLA and Clay-20 interface easily because of hydrophilic property of organic Clay-20. It was confirmed that a proper amount of Clay-20 can improve the mechanical properties of PLA and can control biodegradable property of PLA.

Correlation between Physico-Mechanical and Rheological Properties of Rubber Compounds Based on NR-BR with C-C Gel Content in Polybutadiene (NR-BR 기반 고무소재에서 폴리부타디엔의 C-C 겔 함량과 물리기계적, 유변학적 특성 사이의 상호관계)

  • Ganjali, Saeed Taghvaei;Motiee, Fereshteh;Tabatabaie, Zohreh Ghazi
    • Polymer(Korea)
    • /
    • v.38 no.4
    • /
    • pp.425-433
    • /
    • 2014
  • In this study, microstructure and gel content (C-C) of polybutadiene rubber (PBR) were investigated using various techniques including ASTM D 3616, attenuated total reflectance Fourier transform infrared spectrometry (ATR FTIR), differential scanning calorimetry (DSC) and nuclear magnetic resonance spectroscopy (NMR). The ATR FTIR spectra of the samples were investigated to determine the cis, trans, 1, 2-vinyl and the C-C gel content in PBR. The absorbance ratios of specific peaks in different grades of PBR were correlated with the C-C gel content measured by the ATR FTIR techniques. Physico-mechanical and rheological properties of rubber compounds based on BR with various amounts of gel were determined. The results showed that there is an acceptable correlation between these properties and the C-C gel content of PBR.