• 제목/요약/키워드: contamination of under groundwater

검색결과 67건 처리시간 0.036초

Spectrophotometric Determination of Ultra trace Tri & Hexavalent Chromium by Using on-line Flow Injection Analysis with Dual Pre-concentration Column

  • Jung, Sung-Woon;Lim, Hyun-Woo;Kang, Chul-Ho;Choi, Yong-Wook
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권9호
    • /
    • pp.3437-3442
    • /
    • 2011
  • An on-line flow injection analysis with dual pre-concentration method was developed to determine the ultra trace tri and hexavalent chromium in water. In this system, the cation and anion pre-concentration columns were combined with a 10-port injection valve and then used to separate and concentrate Cr (III) and Cr (VI) selectively. The two species of concentrated chromium were sequentially eluted and determined by using HCl-KCl buffer of pH 1.8 as an eluent. Cr (III) was oxidized by hydrogen peroxide to Cr (VI). It was detected spectrophotometrically at 548 nm by complexation with DPC (diphenylcarbazide). Several factors such as concentration of $H_2O_2$, DPC and coil length in reaction condition were optimized. The linear range for Cr (III) and Cr (VI) was 0.1-50 ${\mu}g$/L. The limit of detections ($3{\sigma}$) of Cr (III) and Cr (VI) were 52 ng/L and 44 ng/L under the optimized FIA system, and their recoveries 98% and 103%, respectively. This method was applied to analyze contamination level of chromium species in tap water, groundwater and bottled water.

농경지의 비료, 농약의 지하유실량 추정 -Preferential 흐름모형- (Estimating Leaching of Nutrients and Pesticides in Agricultural Lands -A Perferential Flow Model-)

  • 이남호;타모스틴후이스
    • 한국농공학회지
    • /
    • 제39권2호
    • /
    • pp.62-73
    • /
    • 1997
  • The application of nutrients and pesticides to agricultural lands has been reported to contribute to groundwater contamination, which can be explained by preferential flow in lieu of convective-dispersive flow. An one-dimensional numerical model depicting preferential water and solute movement was modified to describe multi-layer flows. The model is based on a piecewise linear conductivity function. By combining conservation of mass and Darcy's law and using the method of characteristics a solution is obtained for water flow in which water moves at distinct velocities in different flow regions instead of an average velocity for the whole profile. The model allows transfer ofqr solutes between pore groups. The transfer is characterized by assuming mixing coefficients. The model was applied to undisturbed soil columns and an experiment site with structured sandy clay loam soil. Chloride, bromide, and 2, 4-D were used as tracers. Simulated solutes concentrations were in good agreement with the soil column data and field data in which preferential flow of solute is significant. The proposed model is capable of describing preferential solute transport under laboratory and field conditions.

  • PDF

광주광역시 운정동 위생매립장 주변 지하수와 하천수의 환경지구화학적 오염특성 (Characteristics of Environmental Contamination for the Groundwater and Stream Water in the Vicinity of the Woonjeongdong Sanitary Landfill Area in Kwangju-city, Korea)

  • 오근창;윤정환;김경웅;박천영;김정빈
    • 자원환경지질
    • /
    • 제34권6호
    • /
    • pp.523-537
    • /
    • 2001
  • 운정동위생매립장 입구부근의 잡용수가 유입되는 지점의 하천수는 주변 하천수에 비하여 pH, EC, turbidity, TDS, NaCl(%) 등이 높게 나타나고 있으며, 유기물의 부화로 인한 낮은 DO가 관측되어 매립자의 잡용수에 의한 오염을 시사하고 있다. 잡용수가 합류한 하천에 인접한 C 지점의 지하수에서 EC, TDS, NaCl(%) 등이 높게 나타나고 있으며, A 와 F 지점의 지하수에서도 B ,D , 그리고 E 지점의 지하수에 비하여 이러한 특성들이 높게 나타나는 특징을 보인다. 특히 이들 지하수는 piper diagram에서도 공통적으로 Na-Cl형으로 분류되어 운정동위생매립장의 침출수와 잡용수에 의한 오염을 강력하게 지시하고 있다. 연구지역의 지하수와 하천수 오염특성은 건기인 겨울철시료에 비하여 우기인 여름철시료에서 더 높게 나타나고 있음을 확인하였다. 지하수와 하천수에 대한 요인분석결과, 침출수중의 함량이 높게 나타나는 원소들(Ca, Ma, Na, K, $Cl­^{-}$­, $SO_4^{2-}$, $F­^{-}$)의 명료한 수반관계를 확인하였으며 이들을 매립장 주변 수계의 오염지시자로 활용할 수 있을 것이다.

  • PDF

유류로 오염된 군사기지의 복원 우선순위 결정 모델 연구 (A Study on the Restoration Priority Decision Model of Oil Contaminated Military Sites)

  • 노경희;양임석;한욱
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2000년도 창립총회 및 춘계학술발표회
    • /
    • pp.59-63
    • /
    • 2000
  • 최근 군사기지에서의 환경복원활동은 미국과 독일 등의 일부 선진국을 중심으로 인간의 건강과 환경을 보호하기 위한 차원에서 연구가 진행되고 있다. 본 연구는 상대적 위해성평가 기법을 이용하여 군사기지 복원을 위한 우선순위 결정을 지원함으로서, 효율적인 자원배분이 가능하고 군에 적합한 타당한 모델이 개발될 수 있도록 하는 연구에 초점을 맞추었다. 평가 대상은 군사기지 내에서 유류로 오염된 지역의 전 범위를 대상으로 하였다. 본 연구모델은 유류오염물질 요소, 수용체 요소 및 이동경로 요소의 세가지 평가요소를 평가하여 총 27개의 메트릭스 칸에 각 평가요소의 위해등급을 상호 결합하여 판단함으로서, 종합적인 복원순위를 긴급·보통·유예로 나타냈다. 이는 최대한 간편한 평가체제를 유지하기 위하여 세가지의 등급으로 그룹화하여 평가한 것이다. 본 연구모델은 복원이 요구되는 지역에 대하여 자원의 배분을 위한 접근을 위해 군의 환경관리자는 누구나 쉽게 이해하고 적용 가능하다는 중요한 장점이 있다 따라서, 향후 발전적인 연구과제에서 본 연구모델을 시발점으로 지속적으로 보완된다면, 군의 위해성평가 체계의 정착이 이루어질 것으로 기대한다.

  • PDF

비위생매립지 정밀조사 및 침출수 방지를 위한 정비방안 연구 (Case Study of Remidation and Investigation of Closed Unsanitary Landfill for Prevention of Leachate)

  • 김상근;이용수
    • 한국지반환경공학회 논문집
    • /
    • 제13권1호
    • /
    • pp.5-13
    • /
    • 2012
  • 지난 10년 동안 폐기물의 발생량이 크게 증가하여 매립지의 숫자가 급증하고 있으며 건설되는 폐기물 매립지는 차수층, 침출수 집배수층 및 최종복토층 등을 갖춘 위생매립지이며 폐기물관리법의 기준을 만족하는 처리시설로 건설된다. 그러나 과거 매립지는 차수막이 설치되어 있지 않는 단순 비위생 매립지의 형태로써 침출수 발생에 의한 지하수 및 지표수 수질오염과 토양오염을 지속적으로 유발하고 있는 실정이다. 비위생 형태의 사용종료매립장은 주변 지하수 및 토양오염을 유발시킬 수 있으므로 환경부에서는 침출수 처리 및 사후관리가 미흡한 사용종료 매립지에 대하여 '사용종료매립지 정비지침'을 제정하여 관리하도록 하였다. 본 연구에서는 평택시에 위치한 D 사용종료 비위생 매립장에 대하여 정비지침의 안정화도 조사기법에 따라 정밀조사를 실시하여 환경적 평가를 수행하였다. D 매립지의 경우, 침출수의 외부누출 등으로 주변 지표수 및 지하수를 오염시킬 수 있어 우수배제시설 및 심층혼합공법시설을 설치하여 현지안정화 사업을 수행하였다.

혐기성 미생물에 의한 토양내 다핵성방향족화합물의 생물학적 분해 (Biodegradation of Polynuclear Aromatic Hydrocarbons in soil using microorganisms under anaerobic conditions)

  • 안익성
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 춘계학술발표대회
    • /
    • pp.89-91
    • /
    • 2000
  • Polynuclear aromatic hydrocarbon (PAH) compounds are highly carcinogenic chemicals and common groundwater contaminants that are observed to persist in soils. The adherence and slow release of PAHs in soil is an obstacle to remediation and complicates the assessment of cleanup standards and risks. Biological degradation of PAHs in soil has been an area of active research because biological treatment may be less costly than conventional pumping technologies or excavation and thermal treatment. Biological degradation also offers the advantage to transform PAHs into non-toxic products such as biomass and carbon dioxide. Ample evidence exists for aerobic biodegradation of PAHs and many bacteria capable of degrading PAHs have been isolated and characterized. However, the microbial degradation of PAHs in sediments is impaired due to the anaerobic conditions that result from the typically high oxygen demand of the organic material present in the soil, the low solubility of oxygen in water, and the slow mass transfer of oxygen from overlying water to the soil environment. For these reasons, anaerobic microbial degradation technologies could help alleviate sediment PAH contamination and offer significant advantages for cost-efficient in-situ treatment. But very little is known about the potential for anaerobic degradation of PAHs in field soils. The objectives of this research were to assess: (1) the potential for biodegradation of PAH in field aged soils under denitrification conditions, (2) to assess the potential for biodegradation of naphthalene in soil microcosms under denitrifying conditions, and (3) to assess for the existence of microorganisms in field sediments capable of degrading naphthalene via denitrification. Two kinds of soils were used in this research: Harbor Point sediment (HPS-2) and Milwaukee Harbor sediment (MHS). Results presented in this seminar indicate possible degradation of PAHs in soil under denitrifying conditions. During the two months of anaerobic degradation, total PAH removal was modest probably due to both the low availability of the PAHs and competition with other more easily degradable sources of carbon in the sediments. For both Harbor Point sediment (HPS-2) and Milwaukee Harbor sediment (MHS), PAH reduction was confined to 3- and 4-ring PAHs. Comparing PAH reductions during two months of aerobic and anaerobic biotreatment of MHS, it was found that extent of PAHreduction for anaerobic treatment was compatible with that for aerobic treatment. Interestingly, removal of PAHs from sediment particle classes (by size and density) followed similar trends for aerobic and anaerobic treatment of MHS. The majority of the PAHs removed during biotreatment came from the clay/silt fraction. In an earlier study it was shown that PAHs associated with the clay/silt fraction in MHS were more available than PAHs associated with coal-derived fraction. Therefore, although total PAH reductions were small, the removal of PAHs from the more easily available sediment fraction (clay/silt) may result in a significant environmental benefit owing to a reduction in total PAH bioavailability. By using naphthalene as a model PAH compound, biodegradation of naphthalene under denitrifying condition was assessed in microcosms containing MHS. Naphthalene spiked into MHS was degraded below detection limit within 20 days with the accompanying reduction of nitrate. With repeated addition of naphthalene and nitrate, naphthalene degradation under nitrate reducing conditions was stable over one month. Nitrite, one of the intermediates of denitrification was detected during the incubation. Also the denitrification activity of the enrichment culture from MHS slurries was verified by monitoring the production of nitrogen gas in solid fluorescence denitrification medium. Microorganisms capable of degrading naphthalene via denitrification were isolated from this enrichment culture.

  • PDF

Field Studios of In-situ Aerobic Cometabolism of Chlorinated Aliphatic Hydrocarbons

  • Semprini, Lewts
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 총회 및 춘계학술발표회
    • /
    • pp.3-4
    • /
    • 2004
  • Results will be presented from two field studies that evaluated the in-situ treatment of chlorinated aliphatic hydrocarbons (CAHs) using aerobic cometabolism. In the first study, a cometabolic air sparging (CAS) demonstration was conducted at McClellan Air Force Base (AFB), California, to treat chlorinated aliphatic hydrocarbons (CAHs) in groundwater using propane as the cometabolic substrate. A propane-biostimulated zone was sparged with a propane/air mixture and a control zone was sparged with air alone. Propane-utilizers were effectively stimulated in the saturated zone with repeated intermediate sparging of propane and air. Propane delivery, however, was not uniform, with propane mainly observed in down-gradient observation wells. Trichloroethene (TCE), cis-1, 2-dichloroethene (c-DCE), and dissolved oxygen (DO) concentration levels decreased in proportion with propane usage, with c-DCE decreasing more rapidly than TCE. The more rapid removal of c-DCE indicated biotransformation and not just physical removal by stripping. Propane utilization rates and rates of CAH removal slowed after three to four months of repeated propane additions, which coincided with tile depletion of nitrogen (as nitrate). Ammonia was then added to the propane/air mixture as a nitrogen source. After a six-month period between propane additions, rapid propane-utilization was observed. Nitrate was present due to groundwater flow into the treatment zone and/or by the oxidation of tile previously injected ammonia. In the propane-stimulated zone, c-DCE concentrations decreased below tile detection limit (1 $\mu$g/L), and TCE concentrations ranged from less than 5 $\mu$g/L to 30 $\mu$g/L, representing removals of 90 to 97%. In the air sparged control zone, TCE was removed at only two monitoring locations nearest the sparge-well, to concentrations of 15 $\mu$g/L and 60 $\mu$g/L. The responses indicate that stripping as well as biological treatment were responsible for the removal of contaminants in the biostimulated zone, with biostimulation enhancing removals to lower contaminant levels. As part of that study bacterial population shifts that occurred in the groundwater during CAS and air sparging control were evaluated by length heterogeneity polymerase chain reaction (LH-PCR) fragment analysis. The results showed that an organism(5) that had a fragment size of 385 base pairs (385 bp) was positively correlated with propane removal rates. The 385 bp fragment consisted of up to 83% of the total fragments in the analysis when propane removal rates peaked. A 16S rRNA clone library made from the bacteria sampled in propane sparged groundwater included clones of a TM7 division bacterium that had a 385bp LH-PCR fragment; no other bacterial species with this fragment size were detected. Both propane removal rates and the 385bp LH-PCR fragment decreased as nitrate levels in the groundwater decreased. In the second study the potential for bioaugmentation of a butane culture was evaluated in a series of field tests conducted at the Moffett Field Air Station in California. A butane-utilizing mixed culture that was effective in transforming 1, 1-dichloroethene (1, 1-DCE), 1, 1, 1-trichloroethane (1, 1, 1-TCA), and 1, 1-dichloroethane (1, 1-DCA) was added to the saturated zone at the test site. This mixture of contaminants was evaluated since they are often present as together as the result of 1, 1, 1-TCA contamination and the abiotic and biotic transformation of 1, 1, 1-TCA to 1, 1-DCE and 1, 1-DCA. Model simulations were performed prior to the initiation of the field study. The simulations were performed with a transport code that included processes for in-situ cometabolism, including microbial growth and decay, substrate and oxygen utilization, and the cometabolism of dual contaminants (1, 1-DCE and 1, 1, 1-TCA). Based on the results of detailed kinetic studies with the culture, cometabolic transformation kinetics were incorporated that butane mixed-inhibition on 1, 1-DCE and 1, 1, 1-TCA transformation, and competitive inhibition of 1, 1-DCE and 1, 1, 1-TCA on butane utilization. A transformation capacity term was also included in the model formation that results in cell loss due to contaminant transformation. Parameters for the model simulations were determined independently in kinetic studies with the butane-utilizing culture and through batch microcosm tests with groundwater and aquifer solids from the field test zone with the butane-utilizing culture added. In microcosm tests, the model simulated well the repetitive utilization of butane and cometabolism of 1.1, 1-TCA and 1, 1-DCE, as well as the transformation of 1, 1-DCE as it was repeatedly transformed at increased aqueous concentrations. Model simulations were then performed under the transport conditions of the field test to explore the effects of the bioaugmentation dose and the response of the system to tile biostimulation with alternating pulses of dissolved butane and oxygen in the presence of 1, 1-DCE (50 $\mu$g/L) and 1, 1, 1-TCA (250 $\mu$g/L). A uniform aquifer bioaugmentation dose of 0.5 mg/L of cells resulted in complete utilization of the butane 2-meters downgradient of the injection well within 200-hrs of bioaugmentation and butane addition. 1, 1-DCE was much more rapidly transformed than 1, 1, 1-TCA, and efficient 1, 1, 1-TCA removal occurred only after 1, 1-DCE and butane were decreased in concentration. The simulations demonstrated the strong inhibition of both 1, 1-DCE and butane on 1, 1, 1-TCA transformation, and the more rapid 1, 1-DCE transformation kinetics. Results of tile field demonstration indicated that bioaugmentation was successfully implemented; however it was difficult to maintain effective treatment for long periods of time (50 days or more). The demonstration showed that the bioaugmented experimental leg effectively transformed 1, 1-DCE and 1, 1-DCA, and was somewhat effective in transforming 1, 1, 1-TCA. The indigenous experimental leg treated in the same way as the bioaugmented leg was much less effective in treating the contaminant mixture. The best operating performance was achieved in the bioaugmented leg with about over 90%, 80%, 60 % removal for 1, 1-DCE, 1, 1-DCA, and 1, 1, 1-TCA, respectively. Molecular methods were used to track and enumerate the bioaugmented culture in the test zone. Real Time PCR analysis was used to on enumerate the bioaugmented culture. The results show higher numbers of the bioaugmented microorganisms were present in the treatment zone groundwater when the contaminants were being effective transformed. A decrease in these numbers was associated with a reduction in treatment performance. The results of the field tests indicated that although bioaugmentation can be successfully implemented, competition for the growth substrate (butane) by the indigenous microorganisms likely lead to the decrease in long-term performance.

  • PDF

셀레늄으로 개질된 영가철을 이용한 과황산 활성화 속도 조절 및 활성종 전달율 향상에 관한 연구 (Control of Persulfate Activation Rate and Improvement of Active Species Transfer Rate Using Selenium-modified ZVI)

  • 권희원;박해성;황인성;김정진;김영훈
    • 한국환경과학회지
    • /
    • 제32권1호
    • /
    • pp.57-65
    • /
    • 2023
  • The advanced oxidation treatment using persulfate and zero-valent iron (ZVI) has been evaluated as a very effective technology for remediation of soil and groundwater contamination. However, the high rate of the initial reaction of persulfate with ZVI causes over-consumption of an injected persulfate, and the excessively generated active species show a low transfer rate to the target pollutant. In this study, ZVI was modified using selenium with very low reactivity in the water environment with the aim of controlling the persulfate activation rate by controlling the reactivity of ZVI. Selenium-modified ZVI (Se/ZVI) was confirmed to have a selenium coating on the surface through SEM/EDS analysis, and low reductive reactivity to trichlroethylene (TCE) was observed. As a result of inducing the persulfate activation using the synthesized Se/ZVI, the persulfated consumption rate was greatly reduced, and the decomposition rate of the model contaminant, anisole, was also reduced in proportion. However, the final decomposition efficiency was rather increased, which seems to be the result of preventing persulfate over-consumption. This is because the transfer efficiency of the active species (SO4-∙) of persulfate to the target contaminant has been improved. Selenium on the surface of Se/ZVI was not significantly dissolved even under oxidation conditions by persulfate, and most of it was present in the form of Se/ZVI. It was confirmed that the persulfate activation rate could be controlled by controlling the reactivity of ZVI, which could greatly contribute to the improvement of the persulfate oxidation efficiency.

유류저장시설 인근 농경지 중 Benzene, Toluene, Ethylbenzene 및 Xylene (BTEX) 잔류량 모니터링 (Monitoring of Benzene, Toluene, Ethylbenzene and Xylene (BTEX) Residues in Arable Lands around Oil Reservoir)

  • 임성진;김진효;최근형;조남준;홍진환;박병준
    • 한국환경농학회지
    • /
    • 제33권4호
    • /
    • pp.414-418
    • /
    • 2014
  • BACKGROUND: Benzene, toluene, ethylbenzene and xylene (BTEX), which are volatile aromatic hydrocarbons and main constituents of gasoline, are neuro-carcinogenic organic pollutants in soil and groundwater. Korea Ministry of Environment has established the maximum permissible level of BTEX in arable soil to 1, 20, 50 and 15 mg/kg, respectively. METHODS AND RESULTS: To understand an arable soil contamination by BTEX, we collected 92 samples from the arable lands around oil reservoir, and analyzed the BTEX residue using a GC-MS with head-space sampler. A linear correlation between BTEX concentration and peak areas was detected with coefficient correlations in the range of 0.9807-0.9995. The method LOQ of BTEX was 0.002, 0.014, 0.084, and 0.038 mg/kg, respectively. Recoveries of 0.5 mg/kg BTEX were found to be 73.7-96.9%. The precision was reliable since RSD percentage (0.7-7.5%) was below 30, which was the normal percent value. Also, BTEX in all samples were detected under the LOQ. CONCLUSION: These results showed that the investigated arable soils around airport and oil reservoir in Korea were not contaminated by oils.

토양 중금속 함량 측정에 대한 토양오염공정시험기준과 국제표준간의 적합성 평가 (Assessment for the Comparability between Korean Ministry of Environment Standard and ISO Standard for the Determination of Heavy Metals in Soil)

  • 신건환;이군택;이원석;김지인;김보경;박현정
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제17권3호
    • /
    • pp.1-9
    • /
    • 2012
  • According to the agreement on WTO/TBT, we are under the situation to adopt international standard (ISO standard) as a national standard if it exists. However, in case of environmental area, it is a domestic legal obligation to use Korean environmental standard method(KESM) for analyzing various contaminants. Therefore it is necessary to assess the comparability between KEM and ISO standard prior to apply ISO standard to soil conservation law in Korea. The main purpose of this study is to assess the comparability of both methods for analyzing heavy metals in soil. We looked over various aspects like pre-treatment, calibration curve range, detection wavelength, soil organic matter content and so on. Apparently, the procedure of both methods is almost same. However in details, both methods are different in stationary time before aqua-regia extraction using reflux system, calibration curve range for Cu, Pb, Ni and measuring wavelength for Pb. According to the results of comparison test, the results were significantly different when the different calibration range was used. In case that all the extracts independent of methods were reanalyzed with the same calibration range of each method, both methods showed statistically same results. Other conditions like different stationary time, measuring wavelength of AAS and soil organic matter content did not have any influence on the analytical result. Therefore, we suggest to extend the calibration curve range to 0~8 mg/L which is used in KS I ISO standard(Korean standard related with environment which is translation version of ISO standard without any technical change). In case of $Cr^{6+}$, the results showed no significant differences between two methods even though the pretreatment, instrumentation and other analysis conditions were different. In addition to UV/Visble spectrometry of KESM for soil contamination, we suggest to adopt ion chromatography of ISO 15192(US EPA method 7199) for analyzing $Cr^{6+}$ with the consideration of laboratory work efficiency.