• Title/Summary/Keyword: contaminant barrier

Search Result 36, Processing Time 0.027 seconds

Analysis on Contaminant Transport according to the Embedded Depth of Vertical Barrier of Offshore Landfill (해상 폐기물매립지 연직차수벽체 근입심도에 따른 오염물질 이동특성 분석)

  • Park, Haeyong;Oh, Myounghak;Kwon, Osoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.8
    • /
    • pp.29-37
    • /
    • 2016
  • In order to prevent leakage of contaminants in offshore landfill, vertical barrier should be installed. Vertical barrier should be installed at designed depth of seabed to prevent the horizontal transport of contaminant in the subsurface. In this study, the seepage and contaminant transport in the subsurface according to embedded depth of vertical barrier were analyzed by using 2-D finite element analysis program SEEP/W and 3-D finite difference analysis program Visual Modflow. Numerical modelling results show that seepage flux and contaminant transport in seabed was greatly reduced when vertical barrier was installed at certain depth of low permeable layer. Therefore, the determination of minimum embedded depth for preventing contaminant leakage is helpful to design the economical vertical barrier.

Seepage-Advection-Dispersion Numerical Analysis of Offshore Rubble Mound Revetment Landfill Under Transient Flow (비정상류 조건에서 경사식호안매립장에 대한 침투이류 분산해석)

  • Hwang, Woong-Ki;Kim, Hyang-Eun;Kim, Tae-Hyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.4
    • /
    • pp.1-9
    • /
    • 2020
  • This study analyzes contaminant movement under transient flow in a rubble mound revetment offshore waste landfill barrier system that prevents contaminant runoff. The barrier system consists of bottom layer and side barrier. For the bottom layer system, impermeable clay layer is used. For the side barrier system, the HDPE barrier sheet (primary element) plays the main role, and the intermediate protection layer (supplementary element) is responsible for the barrier. Seepage, advection, dispersion numerical analysis was carried out using SEEP / W and CTRAN / W programs. As a result, under abnormal conditions considering the fluctuation in tidal range, the volume and direction of the flow velocity vector of the pore water change with time and the dispersion concentration of the contaminant changes. When comparing the case of 2 m tidal range and 8 m tidal range, the larger the tide value, the higher the concentration of contaminant under abnormal conditions. It was found that the rate of change of the concentration of the contaminant changed depending on the change in the tidal range, and as a result, the outflow of the pollutant was smaller than that in the steady flow state.

Changes of Performance of Soil-Cement Barrier due to Migration of Acids (산 이동에 따른 심층혼합기둥체 차수벽의 성능변화)

  • 정문경;천찬란;이주형;김강석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.189-196
    • /
    • 2003
  • Soil-cement column is often used as a contaminant barrier. This study presents the results of experimental study performed to investigate the changes of properties of soil-cement column under the attack of acids. Sulfuric nitric, and ascetic acid were used as contaminants. Specimen were made of clayey and sandy soils with addition of cement and water Permeability of soil-cement decreased with time during permeability test. When significant amount of acid percolated the specimen, permeability increased and compressive strength decreased due to the dissolution and leaching of cement and its chemical reaction compounds. Sulfuric and nitric acid were more effective than ascetic acid in deteriorating soil-cement column. Amount of acid required to lower the pH of soil cement below 12 was calculated from the results of permeability tests. This leads to a conclusion that, under the conditions employed in this study, the chemical stability of soil-cement column could be maintained against acid attack for longer than generally accepted lifetime of contaminant barriers.

  • PDF

Permeable Reactive Barrier Using Atomizing Slag Material for Waste Contaminant Management

  • Chung Ha-Ik;Kim Sang-Keun;Chang Won-Seok
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.10a
    • /
    • pp.122-122
    • /
    • 2005
  • The remediation for contaminated soil and groundwater in contaminated site and waste site has to be compact and economic in maintaining and operating the system. In this study, the atomized slag was tested if they are an effective reactive material in permeable reactive barrier This novel reactive system technology was applied to the treatment of leachate from unplanned waste landfill. The system was optimized and developed to be commercialized.

  • PDF

Containing Heavy Metal Contaminants Using Soil-Cement Column Barrier (심층혼합기둥체 차수벽을 이용한 중금속 오염물질의 이동 제어)

  • 정문경;천찬란;이주형;김강석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.821-826
    • /
    • 2003
  • Laboratory experiments were peformed to understand physical properties of soil-cement column under the influence of acidic flow including metal contaminants and its retaining capacity against metal migration. The contaminant used in this study was nitric acid with Cu and Cd. The Permeability of soil-cement column decreased when pH of the column began to drop below 12. Decreases in pH led to significant reduction of compressive strength of clayey soil-cement specimen, while relatively marginal reduction for sandy soil-cement specimen. The metal contaminants did not leachate from soil-cement column until pH of soil-cement dropped below 7∼8 for Cu and 9∼10 for Cd. Metal contaminants were precipitated and trapped inside the soil-cement column at pHs higher than those mentioned as verified with metal analysis and visual inspection. This indicated that soil-cement column not only performs well as a cut-off wall, but also helps alleviating the level of contamination of the surrounding environment.

  • PDF

Permeability Characteristics of Geosynthetics Vertical Barrier Connections for the Prevention of Contaminants Diffusion (오염물질 확산방지를 위한 토목섬유 연직차수벽 연결부의 투수성능 평가)

  • Park, Jeong Jun
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • Purpose: In this study, we used hydrophilic waterstop used in geosynthetics vertical barrier system to evaluate the performance of impermeability under sealing conditions. Method: ASTM D5887 and ASTM D6766 were applied to determine the capability of the connection during the geosynthetics vertical barrier system. Hydrophilic waterstop was saturated in each solution and the weight, thickness, and volume changes were analyzed over elapsed time. Hydrophilic waterstop was installed at the geosynthetics vertical barrier system connection to evaluate the permeability characteristics. Results: As the expansion reaction time of hydrophilic waterstop increased relatively under saline conditions, the decrease in permeability also showed a smaller decrease in fresh water. Furthermore, the method of engagement of the geosynthetics vertical barrier system showed somewhat better performance of the impermeability due to the large pressure resistance caused by the roll joint type than interlock type. Conclusion: In urban pollutants, which can estimate the outflow of pollutants such as oil storage facilities and industrial complexes, proactive response technologies that can prevent the contaminant diffusion can significantly reduce the damage.

Seepage-Advection-Dispersion Numerical Analysis of Barrier System of Offshore Rubble Mound Revetment Landfill Under Steady Flow (정상류 조건에서 경사식호안 해상폐기물매립장의 차수에 대한 침투이류 분산해석)

  • Hwang, Woong-Ki;Kim, Hyang-Eun;Kim, Tae-Hyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.97-106
    • /
    • 2019
  • This study was conducted to propose a reasonable requirement regulation of barrier system of rubble mound revetment offshore landfill for preventing contaminant leakage. The barrier is composed with bottom layer and side barrier. The bottom layer was assumed as impermeable clay layer and side barrier was composed with HDPE sheet (primary element) and mid-protection layer (supplementary element). Seepage-advection-dispersion numerical analysis has been conducted using SEEP/W and CTRAN/W programs under steady flow. As the results, the minimum required barrier regulations for hydraulic conductivity and thickness of the bottom layer were suggested. For side barrier, the extended length of HDPE sheet and the hydraulic conductivity of mid-protection layer were also suggested.

Clean-up of Contaminated Groundwater by Permeable Reactive Barrier (투수성 반응벽에 의한 오염지하수 복원효과 분석)

  • 정하익;김상근
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.542-547
    • /
    • 2000
  • It has become interested in the concept of permeable barriers for the containment and/or destruction of contaminated groundwater. The purpose of these trench-like barriers is to provide in situ capture and possibly destruction of the contaminant while preserving groundwater flow to uncontaminated zones. For instance, a trichloreethylene(TCE) plume may be contained by a permeable in which reactive iron reduces TCE to ethylene and ethane, compounds which can be easily biodegraded. The objective of this research is to examine the feasibility of using zero-valent iron as a clean-up media in permeable reactive barrier system. A series of laboratory column tests are performed. The concentration of influent and effluent water and the rate of clean up are analysed from these test results. The experimental result shows that the majority of the contamination in groundwater is removed in the reactor. And it shows the corresponding increase in the concentration of chloride ions through the reactor. Results from this study indicate that permeable reactive barrier containing admixtures of zero-valent iron and other materials can effectively clean up groundwater contaminated with organic compounds.

  • PDF

A Study on the Selectively Block Barrier for Prevent the Spread of TPH and Phenol in the Ground (지중 내 TPH, Phenol의 확산방지를 위한 선택적 차수재 제조에 관한 연구)

  • HoJin Lim;WooRi Cho;SeungJin Oh;SuHee Kim;JaiYoung Lee
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • In this study, a selecvively block barrier was developed to prevent the spread of contaminants (TPH, Phenol) in the ground only when contamination occurs. The materials were used Jumunjin sand, bentonite, polyolefin elastomer and spill hound marine. First, the properties and environmental hazards characteristics of materials were analyzed for evaluated their usability. Then, the possibility of use as a barrier material was confirmed by analyzing the water permeability characteristics that change after 24 hours of contact with contaminants. As a result of the analysis, the pH of each component was similar to the general groundwater pH range. In addition, the toxicity characteristics and the possibility of dissolution of hazardous substances, it was determined that there was no environmental hazard as the content was below the regulation value. Lastly, when comparing the permeability coefficient before and after contact with the contaminant, the permeability coefficient of approximately α × 10-3cm/sec before contact was reduced to α × 10-6cm/sec after contact with the contaminant.

Simultaneous Removal of Cd and Cr(VI) in the Subsurface Using Permeable Reactive Barrier Filled with Fe-loaded Zeolite: Soil Box Experiment (Fe-loaded zeolite로 충진된 투수성 반응벽체를 이용한 지반 내 Cd과 Cr(VI)의 동시제거: 모형 토조 실험)

  • Rhee, Sung-Su;Lee, Seung-Hak;Park, Jun-Boum
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.10
    • /
    • pp.61-68
    • /
    • 2010
  • A pilot-scale model test was performed to estimate the availability of new material, Fe-loaded zeolite, as the filling material in permeable reactive barrier (PRB) against the contaminated groundwater with both Cd and Cr(VI). Aquifer was simulated by filling up a large scale soil tank with sands, and mobilizing the water flow by the head difference of water level in both ends of the tank. Then, the mixture of concentrated Cd and Cr(VI) solution was injected into the aquifer to form a contaminant plume, and its behavior through Fe-loaded zeolite barrier was monitored. The test results showed that Fe-loaded zeolite barrier successfully treated the contaminant plume containing both Cd and Cr(VI) and that the immobilized contaminants in the barrier were not desorbed or released. The results indicated that the Fe-loaded zeolite could be a promising material in PRBs against the multiple contaminants with different ionic forms like Cr(VI) and Cd.