• Title/Summary/Keyword: containment structure

Search Result 174, Processing Time 0.025 seconds

Sloshing Load Analysis in Spherical Tank of LNG Carrier (LNG 운반선의 구형 화물창 슬로싱 해석)

  • Noh B. J.
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.22-30
    • /
    • 2005
  • Sloshing loads, produced by the violent liquid free-surface motions inside the cargo tank have become an important design parameter in ship building industry since there have been demands for the increased sizes of the cargo containment system of LNG carriers. In this study, sloshing impact pressure acting on the shell of the spherical cargo tank of an LNG carrier as well as dynamic pressure and flow behavior around the pump tower located at the center of the tank have been calculated. Comparative numerical sloshing simulations for a spherical LNG tank using 2-D LR.FLUIDS which is based on the finite difference method and 3-D MSC.DYTRAN which is capable of calculating nonlinear fluid-structure interaction have been carried out. A method of calculating sloshing-induced dynamic loads and the subsequent structural strength analysis for pump tower of a spherical LNG carrier using MSC. DYTRAN and MSC.NASTRAN have been presented.

  • PDF

The Study of 1-Way FSI for Strength Assessment of LNG Cargo Containment System (1-way FSI 기법에 의한 LNG 운반선 화물창의 강도평가에 관한 연구)

  • Lee, Sung-Je;Yang, Yong-Sik;Kim, Sung-Chan;Lee, Jang-Hyun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.527-530
    • /
    • 2011
  • 전 세계적인 LNG 수요 증가에 따라 LNG 운반선의 대형화 및 극한 환경의 항로 선택이 불가피해지고 있다. 이러한 상황에서 LNG의 슬로싱 현상에 따른 화물창의 구조적 안정성 여부가 큰 이슈거리로 떠오르고 있다. 슬로싱 현상에 의한 구조 안전성을 평가하는 가장 이상적인 방법은 유체 영역과 탱크의 복합적인 상호 작용을 완벽하게 구현하는 것이다. 하지만 과도한 계산 시간과 결과의 정확성이 확보되지 못한 상황에서 LNG 운반선 화물창의 안전성 평가에 적용하기에는 문제가 있다. 많은 연구 단체에서는 불규칙적인 슬로싱 압력 신호를 삼각파 등의 형태로 이상화하여 구조해석에 적용하고 있지만 이 또한 유체의 압축성 및 비선형성을 고려하는데 한계를 드러내고 있다. 본 연구에서는 슬로싱 하중을 받는 구조의 안전성을 평가함에 있어 쌍방향(2-way) FSI(Fluid-Structure Interaction)의 과도한 해석 시간 및 수렴의 어려움을 보안하고 유체의 비선형성을 고려할 수 있는 단 방향(1-way) FSI 기법을 이용하는 절차를 제안하고자 한다.

  • PDF

Experimental Investigation on the Vapor Explosions with Water/R22 (Water / R22 폭발실험수행을 통한 증기폭발에 관한 연구)

  • Park, I.K.;Park, G.C.
    • Nuclear Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.257-264
    • /
    • 1994
  • Experimental studies hate been peformed to investigate vapor explosion phenomena which may threaten the containment integrity during severe accidents in nuclear power plants. In this study, experimental equipment is constructed for vapor explosion experiments, and the vapor explosion experiments were conducted using water/R22. During the experiments, water/R22 interaction phenomena were observed using the high speed camera, and the explosion pressure and released mechanical energy were measured with pressure transducer and pressure relief tube. And the effects of some important parameters-hot liquid temperature, hot liquid injection velocity, hot liquid injection velocity, hot liquid injection time, and cold liquid depth-were investigated on the vapor explosion. Also, the experiment with grid was conducted to study reactor -vessel-lower-structure effect on fuel/coolant interaction. Water/R22 explosion conversion ratios were measured between 0.5∼1.6%.

  • PDF

Direct strength evaluation of the structural strength of a 500 cbm LNG bunkering ship

  • Muttaqie, Teguh;Jung, DongHo;Cho, Sang-Rai;Sohn, Jung Min
    • Structural Engineering and Mechanics
    • /
    • v.81 no.6
    • /
    • pp.781-790
    • /
    • 2022
  • The present paper describes a general procedure of the structural safety assessment for the independent type C tank of LNG bunkering ship. This strength assessment procedure consists of two main scheme, global Finite Element Analysis (FEA) model primarily for hull structure assessment and detailed LNG Tank structures FEA model including the cylindrical tank itself and saddle-support structures. Two kinds of mechanism are used, fixed and slides constraints in fore and rear of the saddle-support structures that result in a variation of the reaction forces. Finite Element (FE) analyses have been performed and verified by the strength acceptance criteria to evaluate the safety adequacy of yielding and buckling of the hull and supporting structures. The detail of FE model for an LNG type C tank and its saddle supports was made, which includes the structural members such as cylindrical tank shell, ring stiffeners, swash bulkhead, and saddle supports. Subsequently, the FE buckling analysis of the Type C tank has been performed under external pressure following International Gas Containment (IGC) code requirements. Meanwhile, the assessment is also performed for yielding and buckling strength evaluation of the cylindrical LNG tank according to the PD 5500 unfired fusion welded pressure vessels code. Finally, a complete procedure for assessing the structural strength of 500 CBM LNG cargo tank, saddle support and hull structures have been provided.

Impedance investigation of the surface film formed on aluminum alloy exposed to nuclear reactor emergency core coolant

  • Junlin Huang;Derek Lister;Xiaoliang Zhu;Shunsuke Uchida;Qinglan Xu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1518-1527
    • /
    • 2023
  • A method was proposed for in-situ evaluating the thickness and resistivity of the oxide/hydroxide film formed on the surface of aluminum alloy exposed to sump water formed in the containment after a loss-of-coolant accident. The evaluation entailed fitting a model for the film impedance, which has film thickness and other variables describing the resistivity profile of the film along its thickness direction as fitting parameters, to the practically measured electrochemical impedance data. The obtained resistivity profiles implied that the films formed at pHs25℃ 7, 8, 9, 10, and 11 all had a duplex structure; compared to the outer layer in contact with the solution, the inner layer of the film had a much higher resistivity and was inferred to be denser and provide most of the protectiveness of the film. Both the thickness and the total resistance of the film decreased with the increasing solution pH25℃, suggesting that the films formed in more alkaline solutions had less protectiveness against corrosion, consistent with the increasing aluminum alloy corrosion rates previously identified.

Static and Dynamic Analysis of Reinforced Concrete Axisymmetric Shell on the Elastic Foundation -Effect of Steel on the Dynamic Response- (탄성지반상에 놓인 철근 콘크리트 축대칭 쉘의 정적 및 동적 해석(IV) -축대칭 쉘의 동적 응답에 대한 철근의 영향을 중심으로-)

  • 조진구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.4
    • /
    • pp.106-113
    • /
    • 1997
  • Dynamic loading of structures often causes excursions of stresses well into the inelastic range, and the influence of the geometric changes on the dynamic response is also significant in many cases. Therefore, both material and geometric nonlinearity effects should be considered in case that a dynamic load acts on the structure. A structure in a nuclear power plant is a structure of importance which puts emphasis on safety. A nuclear container is a pressure vessel subject to internal pressure and this structure is constructed by a reinforced concrete or a pre-stressed concrete. In this study, the material nonlinearity effect on the dynamic response is formulated by the elasto-viscoplastic model highly corresponding to the real behavior of the material. Also, the geometrically nonlinear behavior is taken into account using a total Lagrangian coordinate system, and the equilibrium equation of motion is numerically solved by a central difference scheme. The constitutive relation of concrete is modeled according to a Drucker-Prager yield criterion in compression. The reinforcing bars are modeled by a smeared layer at the location of reinforcements, and the steel layer model under Von Mises yield criteria is adopted to represent an elastic-plastic behavior. To investigate the dynamic response of a nuclear reinforced concrete containment structure, the steel-ratios of 0, 3, 5 and 10 percent, are considered. The results obtained from the analysis of an example were summarized as follows 1. As the steel-ratio increases, the amplitude and the period of the vertical displacements in apex of dome decreased. The Dynamic Magnification Factor(DMF) was some larger than that of the structure without steel. However, the regular trend was not found in the values of DMF. 2. The dynamic response of the vertical displacement and the radial displacement in the dome-wall junction were shown that the period of displacement in initial step decreased with the steel-ratio increases. Especially, the effect of the steel on the dynamic response of radial displacement disapeared almost. The values of DMF were 1.94, 2.5, 2.62 and 2.66, and the values increased with the steel-ratio. 3. The characteristics of the dynamic response of radial displacement in the mid-wall were similar to that of dome-wall junction. The values of DMF were 1.91, 2.11, 2.13 and 2.18, and the values increased with the steel-ratio. 4. The amplitude and the period of the hoop-stresses in the dome, the dome-wall junction, and the mid-wall were shown the decreased trend with the steel-ratio. The values of DMF were some larger than those of the structure without steel. However, the regular trend was not found in the values of DMF.

  • PDF

Generation of Floor Response Spectra including Equipment-Structure Interaction in Frequency Domain (진동수 영역에서 기기-구조물 상호작용을 고려한 층응답스펙트럼의 작성)

  • Choi, Dong-Ho;Lee, Sang-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.6 s.46
    • /
    • pp.13-19
    • /
    • 2005
  • Floor response spectra for dynamic response of subsystem such as equipment, or piping in nuclear power plants are usually generated without considering dynamic interaction between main structure and subsystem. This study describes the analytic method in which equipment response spectra can be obtained through dynamic analysis considering equipment-structure Interaction(ESI). In this method, dynamic response of the equipment by this method is based on a dynamic substructure method in which the equipment-structure system is partitioned into the single-degree-ol-freedom system(SDOF) representing the equipment and the equipment support impedance representing the dynamic charactenstics of the structure ai the equipment support. A family of equipment response spectra is developed by applying this method to calculate the maximum responses of a family of SDOF equipment systems with wide banded equipment frequency, damping ratio, and mass. The method is validated by comparing the floor response spectrum from this method with the floor response spectrum generated from the rigorous analysis including equipments on the containment building of a prototypical nuclear power plant. in order to Investigate ESI effect in the response of equipment, response values from the method and the conventional approach without considering ESI are compared for the equipment having the mass less than 1% of the total structural mass. Response spectra from the method showed lower spectral amplitudes than those of the conventional floor response spectra around controlling frequencies.

Numerical Model of Heat Diffusion and Evaporation by LNG Leakage at Membrane Insulation (LNG 화물창 방열재 균열에 따른 액화천연가스의 확산 및 온도 예측을 위한 수치 모델)

  • Lee, Jang Hyun;Kim, YoonJo;Hwang, Se Yun
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.517-526
    • /
    • 2014
  • The leakage of cryogenic LNG through cracks in the insulation membrane of an LNG carrier causes the hull structure to experience a cold spot as a result of the heat transfer from the LNG. The hull structure will become brittle at this cold spot and the evaporated natural gas may potentially lead to a hazard because of its flammability. This paper presents a computational model for the LNG flow and heat diffusion in an LNG insulation panel subject to leakage. The temperature distribution in the insulation panel and the speed of gas diffusion through it are simulated to assess the safety level of an LNG carrier subject that experiences a leak. The behavior of the leaked LNG is modeled using a multiphase flow that considers the mixture of liquid and gas. The simulation model considers the phase change of the LNG, gas-liquid multiphase interactions in the porous media, and accompanying rates of heat transfer. It is assumed that the NO96-GW membrane storage is composed of glass wool and plywood for the numerical simulation. In the numerical simulation, the seepage, heat diffusion, and evaporation of the LNG are investigated. It is found that the diffusion speed of the leakage is very high to accelerate the evaporation of the LNG.

Evaluation of Mechanical Performance of Membrane Type Secondary Barrier Anisotropic Composites depending on Fiber Direction (멤브레인 형 2차 방벽 이방성 복합재료의 섬유방향에 따른 기계적 성능 평가)

  • Jeong, Yeon-Jae;Kim, Jeong-Dae;Hwang, Byeong-Kwan;Kim, Hee-Tae;Oh, Hoon-Gyu;Kim, Yong-Tai;Park, Seong-Bo;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.3
    • /
    • pp.168-174
    • /
    • 2020
  • Recently, the size of Liquified Natural Gas (LNG) carriers has been increasing, in turn increasing the load generated during operation. To handle this load, the thickness of LNG Cargo Containment Systems (CCSs) should be increased. Despite increasing the thickness of LNG CCSs, a secondary barrier is still used in conventional thickness. Therefore, the mechanical performance of the existing secondary barrier should be verified. In this study, tensile test of the secondary barrier was performed to evaluate mechanical properties under several low- and cryogenic-temperature conditions considering LNG environment, and in each fiber direction considering that the secondary barrier is composed of anisotropic composite materials depending on the glass fibers. Additionally, the coefficient of thermal expansion was measured by considering the degradation of the mechanical properties of the secondary barrier caused by the generated thermal stress during periodical unloading. As a result, the mechanical performance of secondary barrier in the Machine Direction (MD) was generally found to be superior than that in the Transverse Direction (TD) owing to the warp interlock structure of the glass fibers.

Experimental Evaluation of Internal Blast Resistance of Prestressed Concrete Tubular Structure according to Explosive Charge Weight (프리스트레스트 콘크리트 관형 구조물의 폭발량에 따른 내부폭발저항성능에 관한 실험적 평가)

  • Choi, Ji Hun;Choi, Seung Jai;Yang, Dal Hun;Kim, Jang-Ho Jay
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.3
    • /
    • pp.369-380
    • /
    • 2019
  • When a extreme loading such as blast is applied to prestressed concrete (PSC) structures and infrastructures for an instantaneous time, serious property damages and human casualties occur. However, a existing design procedure for PSC structures such as prestressed containment vessel (PCCV) and gas storage tank do not consider a protective design for extreme internal blast scenario. Particularly, an internal blast is much more dangerous than that of external blast. Therefore, verification of the internal blast loading is required. In this paper, the internal blast resistance capacity of PSC member is evaluated by performing internal blast tests on RC and bi-directional PSC scaled down specimens. The applied internal blast loads were 22.68, 27.22, and 31.75 kg (50, 60, and 70 lbs) ANFO explosive charge at 1,000 mm standoff distance. The data acquisitions include blast pressure, deflection, strain, crack patterns, and prestressing force. The test results showed that it is possible to predict the damage area to the structure when internal blast loading occurs in PCCV structures.