• Title/Summary/Keyword: containment

Search Result 954, Processing Time 0.028 seconds

Comparison of Airborne Nanoparticle Concentrations between Carbon Nanotubes Growth Laboratories based on Containment of CVD (탄소나노튜브 성장 실험실에서 CVD 밀폐 여부에 따른 공기 중 나노입자 농도 비교)

  • Ha, Ju-Hyun;Shin, Yong-Chul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.20 no.3
    • /
    • pp.184-191
    • /
    • 2010
  • Although the usage of nanomaterials including carbon nanotubes (CNTs) has increased in various fields, scientific researches on workers' exposures and controls of these materials are very limited. The purpose of this study was to compare the airborne nanoparticles concentrations from two university laboratories conducting experiments of CNTs growth based on containment of thermal chemical vapor deposition (CVD). Airborne nanoparticle concentrations in three metrics (surface area concentration, particle number concentration, and mass concentrations) were measured by task using three direct reading instruments. In a laboratory where CVD was not contained, the surface area concentration, number concentration and mass(PM$_1$) concentration of airborne nanoparticles were 1.5 to 3.5 times higher than those in the other laboratory where CVD was confined. The ratio of PM$_1$ concentration to total suspended particles(TSP) in the laboratory where CVD was not confined was about 4 times higher than that in the other laboratory. This indicates that CVD is a major source of airbone nanoparticles in the CNTs growth laboratories. In conclusion, researchers performing CNTs growth experiments in these laboratories were exposed to airborne nanoparticles levels higher than background levels, and their exposures in a laboratory with the unconfined CVD were higher than those in the other laboratory with the confined CVD. It is recommended that in the CNTs growth laboratories adequate controls including containment of CVD be implemented for minimizing researchers' exposures to airborne nanoparticles.

Numerical Investigation on Experiment for Passive Containment Cooling System (피동 원자로건물 냉각계통 실험에 관한 수치적 연구)

  • Ha, Hui Un;Suh, Jung Soo
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.3
    • /
    • pp.96-104
    • /
    • 2020
  • The numerical simulations were conducted to investigate the thermal-fluid phenomena occurred inside the experimental apparatus during a PCCS, used to remove heat released in accidents from a containment of light water nuclear power plant, operation. Numerical simulations of the flow and heat transfer caused by wall condensation inside the containment simulation vessel (CSV), which equipped with 18 vertical heat exchanger tubes, were conducted using the commercial computational fluid dynamics (CFD) software ANSYS-CFX. Shear stress transport (SST) and the wall condensation model were used for turbulence closure and wall condensation, respectively. The simulation using the actual size of the apparatus. However, rather than simulating the whole experimental apparatus in consideration of the experimental cases, calculation resources, and calculation time, the simulation model was prepared only in CSV. Selective simulation was conducted to verify the effects of non-condensable gas(NC gas) concentration, CSV internal pressure, and wall sub-cooling conditions. First, as a result of the internal flow of CSV, it was observed that downward flow due to condensation occurred surface of the vertical tube and upward flow occurred in the distant place. Natural convection occurred actively around the heat exchanger tube. Due to this rising and falling internal flow, natural circulation occurred actively around the heat exchanger tubes. Next, in order to check the performance of built-in condensation model using according to the non-condensable gas concentration, CSV internal flow and wall sub-cooling, the heat flux values were compared with the experimental results. On average, the results were underestimated with and error of about 25%. In addition, the influence of CSV internal pressure and wall sub-cooling was small, but when the condensate was highly generated due to the low non-condensable gas concentration, the error was large compared to the experimental values. This is considered to be due to the nature of the condensation model of the CFX code. However, in spite of the limitations of CFD, it is valid to use the built-in condensation model of CFD for PCCS performance prediction from a conservative perspective.

Evaluation of Long-term Performance of Metal Seal Through Accelerated Test (가속화 시험을 통한 금속 밀봉재 장기성능 평가)

  • Choi, Woo-seok;Lim, Jongmin;Yang, Yun-young;Cho, Sang Soon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2_spc
    • /
    • pp.237-245
    • /
    • 2020
  • Metal seals are the main components that establish the containment boundary in bolted casks, which store spent nuclear fuel. These seals are degraded by heat and radiation. In addition, creep occurs when the seals are exposed to intense heat for an extended period. This creep results in the stress relaxation of the seals, which consequently impairs the seal integrity. The stress relaxation can reduce the sealing performance of the metal seal, which can further cause leakage in the storage cask. Moreover, the reduction of bolt tension leads to sealing performance degradation. In this study, the results of high-temperature-accelerated tests were obtained to evaluate the containment integrity of metal seals and the decrease in bolt tension. During the tests, the leakage rate, bolt strain, and ambient temperature of the metal seals were measured and analyzed. The metal seals were found to maintain containment integrity for 50 years of storage. The validity of the acceleration test was also investigated.

Cracking Behavior of Containment Wall of Nuclear Power Plant Reactor (원자력 발전소 격납건물 벽체의 균열거동)

  • Cho, Jae-Yeol;Kim, Nam-Sik;Cho, Nam-So;Choi, In-Kil
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.60-68
    • /
    • 2003
  • Tension tests of six half-thickness concrete containment wall elements were conducted as a part of Korea Atomic Energy Research Institute (KAERI) program. The aim of the KAERI test program is to provide a test-verified analytical method for estimating capacities of concrete reactor containment buildings under internal overpressurization from postulated degraded core accidents. The data from the tests reported herein should be useful for benchmarking analytical method that require modeling of material behavior including concrete cracking behavior and reinforcement/concrete interaction exhibited by the test. Major test variable is compressive strength of concrete, and its effect on the behavior of prestressed concrete panel subjected to biaxial tension is investigated.

An Effect of Surface Dashpot for KC-1 Basic Insulation System Under Sloshing Loads (슬로싱 하중을 받는 KC-1 단열시스템의 표면 완충 효과)

  • Jin, Kyo Kook;Yoon, Ihn Soo;Yang, Young Chul
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.3
    • /
    • pp.193-199
    • /
    • 2015
  • Sloshing of LNG cargo can cause high impact loads on the supporting and containing structures. This is particularly critical for membrane-type tanks since these will have flat surfaces and corner regions which can lead to increased peak pressures for sloshing impacts. The membrane-type containment system is much more flexible compared to the steel hull structure. As a result, fluid-structure interaction plays an important role in the structural analysis of the containment system under sloshing load. This study is based on the direct calculation method of applying sloshing loads to the KC-1 basic insulation system using finite element analysis. The structural analysis of KC-1 basic insulation system considers the dashpot as fluid-structure interaction between liquid cargo and the LNG containment system. The maximum stress of the polyurethane form for KC-1 insulation system is 1.5 times lower than one without dashpot.

A Study on the Strength Safety Analysis of a Full Containment LNG Storage Tank Due to a Wind Pressure (완전밀폐식 LNG 저장탱크에 작용하는 풍압에 의한 강도안전 해석에 관한 연구)

  • Kim, Chung-Kyun;Jeong, Nam-In
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.1
    • /
    • pp.36-41
    • /
    • 2008
  • Using the finite element analysis, this paper presents the strength safety of a side wall of an outer tank and a roof structures in a full containment LNG storage tank system. The outer tank structure in which is constructed with a prestressed concrete is forced by internal hydrostatic and hydrodynamic pressures of a leaked LNG and an external wind pressure including a typhoon one. The FEM computed results show that the ring beam between a side wall of an outer tank and a roof structure supports most of the internal and the external loads. This means that the design point of the outer tank system is a ring beam structure and the other one is a center part of the roof structure. In this FE analysis model of a full containment LNG tank system, the outer tank and the roof structures are safe for the given combined loads such as an internal leaked LNG pressure and an external typhoon pressure.

  • PDF

Preliminary Analysis of Dose Rate Variation on the Containment Building Wall of Dry Interim Storage Facilities for PWR Spent Nuclear Fuel (경수로 사용후핵연료 건식 중간저장시설의 격납건물 크기에 따른 건물 벽면에서의 방사선량률 추이 예비 분석)

  • Seo, M.H.;Yoon, J.H.;Cha, G.Y.
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.4
    • /
    • pp.189-193
    • /
    • 2013
  • Annual dose on the containment building wall of the interim storage facility at normal condition was calculated to estimate the dose rate transition of the facility of PWR spent nuclear fuel. In this study, source term was generated by ORIGEN-ARP with 4.5 wt% initial enrichment, 45,000 MWd/MTU burnup and 10 years cooling time. Modeling of the storage facility and the containment building and radiation shielding evaluations were conducted by MCNP code depending on the distance between the wall and the facility in the building. In the case of the centralized storage system, the distance required for the annual dose rate limit from 10CFR72 was estimated to be 50 m.

A Study on the Boil-Off Rate Prediction of LNG Cargo Containment Filled with Insulation Powders (단열 파우더를 채용한 LNGCC의 BOR예측에 관한 연구)

  • Han, Ki-Chul;Hwang, Soon-Wook;Cho, Jin-Rae;Kim, Joon-Soo;Yoon, Jong-Won;Lim, O-Kaung;Lee, Shi-Bok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.2
    • /
    • pp.193-200
    • /
    • 2011
  • A BOR(Boil-Off Rate) prediction model for the NO96 membrane-type LNG insulation containment filled with superlite powders during laden voyage is presented in this paper. Finite element model for the unsteady-state heat transfer analysis is constructed by considering the air and water conditions and by employing the homogenization method to simplify the complex insulation material composition. BOR is evaluated in terms of the total amount of heat invaded into LNGCC and its variation to the major variables is investigated by the parametric heat transfer analysis. Based upon the parametric results, a BOR prediction model which is in function of the LNG tank size, the insulation layer thickness and the powder thermal conductivity is derived. Through the verification experiment, the accuracy of the derived prediction model is justified such that the maximum relative difference is less than 1% when compared with the direct numerical estimation using the FEM analysis.

The Dynamic Nonlinear Analysis of Shell Containment Building subjected to Aircraft Impact Loading (항공기 충돌에 대한 쉘 격납건물의 동적 비선형해석)

  • 이상진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.567-578
    • /
    • 2002
  • The main purpose of this study is to investigate the dynamic behaviour of containment building in nuclear power plant excited by aircraft impact loading using a lower order 8-node solid element. The yield and failure surfaces for concrete material model is formulated on the basis of Drucker-Prager yield criteria and are assumed to be varied by taking account of the visco-plastic energy dissipation. The standard 8-node solid element has prone to exhibit the element deficiencies and the so-called B bar method proposed by Hughes is therefore adopted in this study. The implicit Newmark method is adopted to ensure the numerical stability during the analysis. Finally, the effect of different levels of cracking strain and several types of aircraft loading are examined on the dynamic behaviour of containment building and the results are quantitatively summarized as a future benchmark.

Efficiency of various structural modeling schemes on evaluating seismic performance and fragility of APR1400 containment building

  • Nguyen, Duy-Duan;Thusa, Bidhek;Park, Hyosang;Azad, Md Samdani;Lee, Tae-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2696-2707
    • /
    • 2021
  • The purpose of this study is to investigate the efficiency of various structural modeling schemes for evaluating seismic performances and fragility of the reactor containment building (RCB) structure in the advanced power reactor 1400 (APR1400) nuclear power plant (NPP). Four structural modeling schemes, i.e. lumped-mass stick model (LMSM), solid-based finite element model (Solid FEM), multi-layer shell model (MLSM), and beam-truss model (BTM), are developed to simulate the seismic behaviors of the containment structure. A full three-dimensional finite element model (full 3D FEM) is additionally constructed to verify the previous numerical models. A set of input ground motions with response spectra matching to the US NRC 1.60 design spectrum is generated to perform linear and nonlinear time-history analyses. Floor response spectra (FRS) and floor displacements are obtained at the different elevations of the structure since they are critical outputs for evaluating the seismic vulnerability of RCB and secondary components. The results show that the difference in seismic responses between linear and nonlinear analyses gets larger as an earthquake intensity increases. It is observed that the linear analysis underestimates floor displacements while it overestimates floor accelerations. Moreover, a systematic assessment of the capability and efficiency of each structural model is presented thoroughly. MLSM can be an alternative approach to a full 3D FEM, which is complicated in modeling and extremely time-consuming in dynamic analyses. Specifically, BTM is recommended as the optimal model for evaluating the nonlinear seismic performance of NPP structures. Thereafter, linear and nonlinear BTM are employed in a series of time-history analyses to develop fragility curves of RCB for different damage states. It is shown that the linear analysis underestimates the probability of damage of RCB at a given earthquake intensity when compared to the nonlinear analysis. The nonlinear analysis approach is highly suggested for assessing the vulnerability of NPP structures.