• Title/Summary/Keyword: contact oxidation

Search Result 263, Processing Time 0.02 seconds

A Study on the Effect of Improving Permeability by Injecting a Soil Remediation Agent in the In-situ Remediation Method Using Plasma Blasting, Pneumatic Fracturing, and Vacuum Suction Method (플라즈마 블라스팅, 공압파쇄, 진공추출이 활용된 지중 토양정화공법의 정화제 주입에 따른 투수성 개선 연구)

  • Geun-Chun Lee;Jae-Yong Song;Cha-Won Kang;Hyun-Shic Jang;Bo-An Jang;Yu-Chul Park
    • The Journal of Engineering Geology
    • /
    • v.33 no.3
    • /
    • pp.371-388
    • /
    • 2023
  • A stratum with a complex composition and a distributed low-permeability soil layer is difficult to remediate quickly because the soil remediation does not proceed easily. For efficient purification, the permeability should be improved and the soil remediation agent (H2O2) should be injected into the contaminated section to make sufficient contact with the TPH (Total petroleum hydrocarbons). This study analyzed a method for crack formation and effective delivery of the soil remediation agent based on pneumatic fracturing, plasma blasting, and vacuum suction (the PPV method) and compared its improvement effect relative to chemical oxidation. A demonstration test confirmed the effective delivery of the soil remediation agent to a site contaminated with TPH. The injection amount and injection time were monitored to calculate the delivery characteristics and the range of influence, and electrical resistivity surveying qualitatively confirmed changes in the underground environment. Permeability tests also evaluated and compared the permeability changes for each method. The amount of soil remediation agent injected was increased by about 4.74 to 7.48 times in the experimental group (PPV method) compared with the control group (chemical oxidation); the PPV method allowed injection rates per unit time (L/min) about 5.00 to 7.54 times quicker than the control method. Electrical resistivity measurements assessed that in the PPV method, the diffusion of H2O22 and other fluids to the surface soil layer reduced the low resistivity change ratio: the horizontal change ratio between the injection well and the extraction well decreased the resistivity by about 1.12 to 2.38 times. Quantitative evaluation of hydraulic conductivity at the end of the test found that the control group had 21.1% of the original hydraulic conductivity and the experimental group retained 81.3% of the initial value, close to the initial permeability coefficient. Calculated radii of influence based on the survey results showed that the results of the PPV method were improved by 220% on average compared with those of the control group.

Processing Conditions and Quality Stability of Frozen Seasoned Sardine Meat during Frozen Storage (냉동 정어리 조미육의 가공 및 저장중의 품질안정성)

  • LEE Eung-Ho;OH Kwang-Soo;AHN Chang-Bum;LEE Tae-Hun;CHUNG Young-Hoon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.20 no.3
    • /
    • pp.191-201
    • /
    • 1987
  • Seasoned sardine meat was prepared to extend the use of sardine for human consumption, and processing conditions and storage stability of frozen seasoned sardine meat were studied during storage at $-20^{\circ}C$. The fish was beheaded, gutted and cleaned in a washing tank. The washed fish was then put through a belt-drum type meat separator which separates the flesh iron the bone and skin. Mechanically deboned fish meat was mixed with $20.6\%$ emulsion curd, $0.5\%$ table salt, $2.0\%$ sugar, $0.4\%$ sodium bicarbonate, $0.2\%$ polyphosphate, $0.1\%$ monosodium glutamate, $0.3\%$ onion powder, $0.1\%$ garlic powder, $0.1\%$ ginger powder, $3.0\%$ soybean protein and $0.1\%$. In sodium erythorbate. This seasoned sardine meat was frozen with contact freezer, packed in a carton box and then stored at $-20^{\circ}C$. The pH, volatile basic nitrogen, viable cell counts, peroxide value, carbonyl value, thiobarbituric acid value, taste compounds, fatty acid composition, salt extractable nitrogen, drip, texture, and color values of the products were determined during frozen storage. The results showed that lipid content in products could be controlled by using emulsion curd, and flavor and texture could be improved by adding spices and soybean protein, and lipid oxidation could be retarded by $0.1\%$ sodium erythorbate. Judging from the results of chemical experiments and sensory evaluation, the products can be preserved in a good quality for 120 days during frozen storage.

  • PDF

Environmental Leachability of Electric Arc Furnace Dust for Applying as Hazardous Material Treatment (제강분진을 이용한 유해물질 처리기술 적용을 위한 안전성 평가)

  • Lee, Sang-Hoon;Kang, Sung-Ho;Kim, Jee-Hoon;Chang, Yoon-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.329-336
    • /
    • 2006
  • Iron manufacturing process involves production of various by-product including slag, sludge, sintering and EAF(Electric Arc furnace dust). Some of the by-products such as EAF and sintering dust are disposed of as waste due to their high heavy metal contents. It has been notice for many years that the EAF dust also contain about 65% of Fe(0) and Fe(II) and then the possible utilization of the iron. One possibility is to apply the EAF as a lining material in conjunction with clay or HDPE liners, in waste landfill. The probable reaction between the leachate containing toxic elements such as TCE, PCE dioxine and $Cr^{6+}$ is reduction of the toxic materials in corresponding to the oxidation of the reduced iron and therefore diminishing the toxicity of the leachate. It is, however, prerequisite to evaluate the leaching characteristics of the EAF dust before application. Amelioration of the leachate would be archived only when the level of toxic elements in the treated leachate is less than that of in the untreated leachate. Several leaching techniques were selected to cover different conditions and variable environments including time, pH and contact method. The testing methods include availability test, pH-stat test and continuous column test. Cr and Zn are potentially leachable elements among the trace metals. The pH of the EAF dust is highly alkaline, recording around 12 and Zn is unlikely to be leached under the condition. On the contrary Cr is more leachable under alkaline environment. However, the released Cr should be reduced to $Cr^{3+}$ and then removed as $Cr(OH)_3$. Removal of the Cr is observed in the column test and further study on the specific reaction of Cr and EAF dust is underway.