• Title/Summary/Keyword: contact angles

Search Result 443, Processing Time 0.029 seconds

A Study on the Surface Modification of Polyimide Film by lon Implantation (이온주입법에 의한 폴리이미드박막의 표면 개질에 대한 연구)

  • 김종택;이덕출
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.4
    • /
    • pp.293-297
    • /
    • 1998
  • The influence of ion implantation on surface properties of polymers was studied. We investigated microhardness, friction, wear and wettablility of polyimide. Energies of 50, 200keV were used with doses range from $1{\times}10^{13} to 1{\times}10^{16} [ions/cm^2]$. The implanted ion species were B, N and Ar. The microhardness of polyimide was increased after implantation for doses of $1{\times}10^{15}\; [ions/cm^2]$. A reduction of the friction coefficient was in most case correlated with a reduction of wear. The contact angles of water for $B^+,N^+$ implanted polyimide decreased from $76^{\circ}C$ to zero, as the fluencies increased at energies of 50 and 200 KeV. However, the contact angle of Ar ion implanted polyimide did not change under ambient room conditions even if the time elapsed. SEM measurement was performed to characterize the modified surface layer.

  • PDF

Surface and Interfacial Energetic Analysis of Amphiphilic Copolymers

  • Kim, Min-Kyun;Yuk, Soon-Hong;Jhon, Mu-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.3
    • /
    • pp.158-161
    • /
    • 1987
  • A Series of hydrophilic-hydrophobic copolymeric surfaces of 2-hydroxyethyl methacrylate (HEMA) and various alkyl methacrylate (RMA) have been prepared by in-situ solution copolymerization using a redox radical initiator. Contact angles of various probing fluids on the polymeric surfaces were determined in air (hydrophobic environment) and under water (hydrophilic environment). From contact angle data, the dispersive interaction contribution (${\gamma}^d_s$) and the polar contribution (${\gamma}^p_s$) to the total surface free energy (${\gamma}^d_s$) and interfacial energetic quantities (e.g., water-polymer, liquid-polymer interface, etc.) were estimated by surface and interface physicochemical theory. From the comparison of surface energetic components between hydrophobic and hydrophilic media, it is found that surface and interface energetic components of polymeric surface as a representative low-energy surface are highly dependent on environmental fluids. Also, from the correlation between interfacial energetic results and surface energetic criterion of biocompatibility, we found that HEMA/BMA, HEMA/HMA copolymer systems are in the region of biocompatibility.

Visualization and Analysis of the Dynamic Behavior of Splashes and Residuals of Droplets Continuously Colliding with a Vertical Wall (수직벽으로 연속 충돌하는 액적들의 비산/잔류 동적 거동 가시화 및 분석 연구)

  • Jaehyeon Noh;Hoonseok Lee;Taeyeong Park;Seungho Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.22 no.2
    • /
    • pp.82-89
    • /
    • 2024
  • In this study, experiments were conducted to visualize and analyze the dynamic characteristics of splash and residual liquid film formation during and after the injection of water droplets onto vertically situated solid substrates with varying surface wettability, elasticity, and microtexture. As wettability decreased (higher contact angle), more splash droplets formed, and the residual liquid film decreased. Low contact angles resulted in thin residual films and less splash. Surface elasticity absorbed the impact forces of droplets, thereby decreasing splash phenomena and significantly reducing the formation of residual liquid films due to surface vibration. Surfaces with microtextures demonstrated control over droplet splash direction, guiding the liquid along desired pathways. High-speed imaging provided detailed insights, showing that surface properties critically influence splash dynamics and residual liquid film formation.

Effects of Low Pressure and Atmospheric Pressure Plasma Treatment on Contact Angle of Polycarbonate Surface (저압 및 대기압 플라즈마 처리를 통한 폴리카보네이트의 접촉각 변화특성 비교)

  • Won, Dong Su;Kim, Tae Kyung;Lee, Won Gyu
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.98-103
    • /
    • 2010
  • The effect of plasma treatment on surface characteristics of polycarbonate (PC) films was investigated using low pressure plasma and atmospheric pressure plasma with oxygen and argon. Untreated PC has a contact angle of $82.31^{\circ}$ with de-ionized water which reduced to $9.17^{\circ}$ as the lowest value after being treated with a low pressure plasma treatment with oxygen. Increase of delivered powers such as RF and AC with a high frequency and gas flow rates was not effective to reduce contact angles dramatically but gave the trend of reducing gradually. The surface of PC treated with plasma shows a low contact angle but the contact angle increases rapidly according to the exposure time in air ambient. Oxygen plasma was more effective to generate the polar functional group regardless of the type of plasma. Conclusively, a low plasma treatment with oxygen is more recommendable when the hydrophilic surface of PC is required.

Effects of Landing Foot Orientations on Biomechanics of Knee Joint in Single-legged Landing

  • Joo, Ji-Yong;Kim, Young-Kwan
    • Korean Journal of Applied Biomechanics
    • /
    • v.28 no.2
    • /
    • pp.143-149
    • /
    • 2018
  • Objective: This study aimed to investigate the influence of landing foot orientations on biomechanics of knee joint in order to identify vulnerable positions to non-contact knee injuries during single-legged landing. Method: Seventeen men (age: $20.5{\pm}1.1 years$, height: $175.2{\pm}6.4cm$, weight: $68.8{\pm}5.8kg$) performed single-leg drop landings repeatedly with three different landing foot orientations. They were defined as toe-in (TI) $30^{\circ}$ adduction, neutral (N, neutral), and toe-out (TO) $30^{\circ}$ abduction positions. Results: The downward phase time of TI was significantly shorter than those of N and TO. The flexion and valgus angle of N was greater than those of TI and TO at the moment of foot contact. At the instance of maximum knee flexion, N showed the largest flexion angle, and TO position had the largest varus and external rotation angles. Regarding ground reaction force (GRF) at the moment of foot contact, TO showed the forward GRF, while others showed the backward GRF. TI indicated significantly larger mediolateral GRF than others. As for the maximum knee joint force and joint moment, the main effect of different foot positions was not significant. Conclusion: TI and TO might be vulnerable positions to knee injuries because both conditions might induce combined loadings to knee joint. TI had the highest mediolateral GRF with a shortest foot contact time, and TO had induced a large external rotation angle during downward phase and the peak forward GRF at the moment of foot contact. Conclusively, N is the preferred landing foot orientation to prevent non-contact knee injuries.

Simulation of Capillary Flow Along a Slot-die Head for Stripe Coatings (Stripe 코팅용 슬롯 다이 헤드 모세관 유동 전산모사)

  • Yoo, Su-Ho;Lee, Jin-Young;Park, Jong-Woon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.92-96
    • /
    • 2019
  • In the presence of ${\mu}-tip$ embedded in a slot-die head for stripe coatings, there arises the capillary flow that limits an increase of the stripe density, which is required for the potential applications in organic light-emitting diode displays. With an attempt to suppress it, we have employed a computational fluid dynamics software and performed simulations by varying the ${\mu}-tip$ length and the contact angles of the head lip and ${\mu}-tip$. We have first demonstrated that such a capillary flow phenomenon (a spread of solution along the head lip) observed experimentally can be reproduced by the computational fluid dynamics software. Through simulations, we have found that stronger capillary flow is observed in the hydrophilic head lip with a smaller contact angle and it is suppressed effectively as the contact angle increases. When the contact angle of the head lip increases from $16^{\circ}$ to $130^{\circ}$, the distance a solution can reach decreases sharply from $256{\mu}m$ to $44{\mu}m$. With increasing contact angle of the ${\mu}-tip$, however, the solution flow along the ${\mu}-tip$ is disturbed and thus the capillary flow phenomenon becomes more severe. If the ${\mu}-tip$ is long, the capillary flow also appears strong due to an increase of flow resistance (electronic-hydraulic analogy). It can be suppressed by reducing the ${\mu}-tip$ length, but not as effectively as reducing the contact angle of the head lip.

Superhydrophobic carbon-based materials: a review of synthesis, structure, and applications

  • Meng, Long-Yue;Park, Soo-Jin
    • Carbon letters
    • /
    • v.15 no.2
    • /
    • pp.89-104
    • /
    • 2014
  • Materials with appropriate surface roughness and low surface energy can form superhydrophobic surfaces, displaying water contact angles greater than $150^{\circ}$. Superhydrophobic carbon-based materials are particularly interesting due to their exceptional physicochemical properties. This review discusses the various techniques used to produce superhydrophobic carbon-based materials such as carbon fibers, carbon nanotubes, graphene, amorphous carbons, etc. Recent advances in emerging fields such as energy, environmental remediation, and thermal management in relation to these materials are also discussed.

Synthesis of $SiO_2$ nanoparticles self-assembled thin film by organic.inorganic hybrid method

  • Hu, Yi;Lyu, Jhong-Ming;Liu, Tung-Cheng;Liu, Jiun-Shing
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1538-1541
    • /
    • 2009
  • Amphiphobic thin films for touched panel application was prepared by $SiO_2$ nanoparticles self-assembled nanostructure. Silicon dioxide nano spheres were prepared by sol-gel method and well dispersed in a solution with surfacants of low surface energy. Nanostrcture thin films were obtained by spin coating technologies.

  • PDF

Improvement of Plating Characteristics Between Nickel and PEEK by Plasma Treatment and Chemical Etching

  • Lee, Hye W.;Lee, Jong K.;Park, Ki Y.
    • Corrosion Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.15-20
    • /
    • 2009
  • Surface of PEEK(poly-ether-ether-ketone) was modified by chemical etching, plasma treatment and mechanical grinding to improve the plating adhesion. The plating characteristics of these samples were studied by the contact angle, plating thickness, gloss and adhesion. Chemical etching and plasma treatment increased wettability, adhesion and gloss. The contact angle of as-received PEEK was $61^{\circ}$. The contact angles of chemical etched, plasma treated or both were improved to the range of $15{\sim}33^{\circ}$. In the case of electroless plating, the thickest layer without blister was $1.6{\mu}m$. The adhesion strengths by chemical etching, plasma treatment or both chemical etching and plasma treatment were $75kgf/cm^2$, $102kgf/cm^2$, $113kgf/cm^2$, respectively, comparing to the $24kgf/cm^2$ of as-received. In the case of mechanically ground PEEKs, the adhesion strengths were higher than those unground, with the sacrifice of surface gloss. The gloss of untreated PEEK were greater than mechanically ground PEEKs. Plating thickness increased linearly with the plating times.

Mean Cutting Force Prediction in Ball-End Milling of Slanted Surface Using Force Map (볼엔드밀 경사면 가공에서 절삭력 맵을 이용한 평균절삭력 예측)

  • 김규만;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.212-219
    • /
    • 1998
  • During machining of dies and molds with sculptured surfaces. the cutter contact area changes continuously and results in cutting force variation. In order to implement cutting force prediction model into a CAM system, an effective and fast method is necessary. In this paper. a new method is proposed to predict mean cutting force. The cutter contact area in the spherical part of the cutter is obtained using Z-map, and expressed by the grids on the cutter plane orthogonal to the cutter axis. New empirical cutting parameters were defined to describe the cutting force in the spherical part of cutter. Before the mean cutting force calculation, the cutting force density in each grid is calculated and saved to force map on the cutter plane. The mean cutting force in an arbitrary cutter contact area can be easily calculated by summing up the cutting force density of the engaged grid of the force map. The proposed method was verifed through the slotting and slanted surface machining with various inclination angles. It was shown that the mean force can be calculated fast and effectively through the proposed method for any geometry including sculptured surfaces with cusp marks and holes.

  • PDF