• Title/Summary/Keyword: contact angle on the needle surface

Search Result 9, Processing Time 0.023 seconds

Change of Needle Contact Angles due to Artificial Acid Rain Treatment (인공산성우 처리에 따른 침엽의 접촉각 변화)

  • Kim, Gab Tae
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.1
    • /
    • pp.32-37
    • /
    • 1994
  • Artificial acid rain(pH 3.0, 4.0 and 5.0) and ground water(pH 6.5) were treated on the potted seedlings of Pinus rigida and Pinus koraiensis to examine its effects on the contact angles on needle surface. Artificial acid rain was prepared by diluting sulfuric acid with ground water and ground water(pH 6.5) was used as control. Artificial acid rain was sprayed to the pots two times per week for growing season, one time per week for winter seasons. About 5mm of artificial acid rain was treated each time from late April, 1992 to early October, 1993. Contact angles on the needle surface were measured and compared among the treatments. The results were summarized as follows. Contact angles between needle surface and water droplet decreased with decrease of pH values of artificial acid rain. Measuring and comparing contact angles might be very effective criteria for early diagnosis of acid rain injury in the field.

  • PDF

Hydrophobic Properties on RF-sputtered PTFE Films coated on UV-treated Glass Substrates (UV 처리된 유리기판위에 RF-스퍼터된 PTFE 박막들의 발수 특성)

  • Son, Jin-Woon;Youn, Hyon-O;Bae, Kang;Sohn, Sun-Young;Kim, Hwa-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.1
    • /
    • pp.6-9
    • /
    • 2010
  • Surface properties of polytetrafluoroethylene(PTFE) films fabricated by rf-magnetron sputtering system with UV surface treatment were investigated to increase water contact angle for their hydrophobic property. We found that the surface morphology and water contact angles of PTFE film modified as a function of the UV treatment times using UV-irradiation were influenced. The water contact angle of PTFE film with optimized UV treatment time for 15 minute showed a high hydrophobicity compared with the film without any surface treatment. We thought that it was due to the energy change of PTFE surface with an adhesion improvement to the glass surface as a smoothing a rough surface with needle-shape and/or the enhancement of an interface property as a removing some defects on the surface like a cleaning effect.

Fabrication of Fine Organic Thin-Film Stripes Using a Hydrophobic Needle (소수성 Needle을 이용한 미세 유기 박막 Stripe 제작)

  • Kim, Jongmyeong;Lee, Jinyoung;Shin, Dongkyun;Park, Jongwoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.1
    • /
    • pp.73-78
    • /
    • 2020
  • There appears lateral capillary force in a hydrophilic flat needle employed for the fabrication of fine organic thin-film stripes, bringing in an increase of the stripe width. It also causes the stripe thickness to increase with increasing coating speed, which is hardly observed in a normal coating process. Through computational fluid dynamics (CFD) simulations, we demonstrate that the lateral capillary flow can be substantially suppressed by increasing the contact angle of the needle end. Based on the simulation results, we have coated the outer surface of the flat needle with a hydrophobic material (polytetrafluoroethylene (PTFE) with the water contact angle of 104°). Using such a hydrophobic needle, we can suppress the lateral capillary flow of an aqueous poly(3,4-ethylenedioxythiophene): poly(4-styrenesulfonate) (PEDOT:PSS) to a great extent, rendering the stripe narrow (63 ㎛ at 30 mm/s). Consequently, the stripe thickness is decreased as the coating speed increases. To demonstrate its applicability to solution-processable organic light-emitting diodes (OLEDs), we have also fabricated OLED with the fine PEDOT: PSS stripe and observed the strong light-emitting stripe with the width of about 68 ㎛.

The properties of hydrophobic concrete prepared by biomimetic mineralization method

  • Huang, Chung-Ho;Fang, Hao-Yu;Zhang, Jue-Zhong
    • Computers and Concrete
    • /
    • v.23 no.5
    • /
    • pp.351-359
    • /
    • 2019
  • In this study, the calcium hydroxide, an inherent product of cement hydration, was treated using biomimetic carbonation method of incorporating stearic acid to generate the hydrophobic calcium carbonate on concrete surface. Carbonation reaction was carried out at various $CO_2$ pressure and temperatures and utilizing the Scanning Electron Microscope (SEM), chloride-ion penetration test apparatus, and compression test machine to investigate the hydrophobicity, durability, and mechanical properties of the synthesized products. Experimental results indicate that the calcium stearate may change the surface property of concrete from hydrophilicity to hydrophobicity. Increasing reaction temperature can change the particles from irregular shapes to needle-rod structures with increased shear stress and thus favorable to hydrophobicity and microhardness. The contact angle against water for the concrete surface was found to increase with increasing $CO_2$ pressure and temperature, and reached to an optimum value at around $90^{\circ}C$. The maximum static water contact angle of 128.7 degree was obtained at the $CO_2$ pressure of 2 atm and temperature of $90^{\circ}C$. It was also found that biomimetic carbonation increased the permeability, acid resistance and chloride-ion permeability of the concrete material. These unique results demonstrate that the needle-rod structures of $CaCO_3$ synthetized on concrete surface could enhance hydrophobicity, durability, and mechanical properties of concrete.

Effects of Artificial Acin Rain on Seed Germination, Growth and Needle of Several Conifers(2) (인공산성우가 몇 침엽수종의 종자발아, 생장 및 침엽에 미치는 영향(2))

  • 김갑태;추갑철
    • Korean Journal of Environment and Ecology
    • /
    • v.7 no.1
    • /
    • pp.10-21
    • /
    • 1993
  • Artificial acid rain (pH 3.0, 4.0 and 5.0) and ground was treated on the seeded pots of 4 species to examine its effects on germination and survival rate, seedling growth and contact angles on needle surface. Artificial acid rain was prepared by diluting sulfuric acid with ground water and ground water (pH 6.5) was used as control. Artificial acid rain was sprayed to seeded pots two or three times per week for growing season, one times per week for winter seasons. About 5mm of artificial acid rain was treated each time from early April, 1991 to early October, 1993. Germination and survival rate, soil acidity, seedling growth and contact angles on the needle surface were measured and compared among the treatments. The results were summarized as follows ; Artificial acid rain might have positive effects on growth-related characteristics of the seedlings in the first and second year of acid rain treatment, and the effects were differed among four species. All growth-related characteristics of the seedlings in third year, however, decreased with decrease of pH values of artificial acid rain. This was considered to the results of acidic accumulation over soil buffer capacity. Needle injury and biomass (defoliation) was correlated with the pH values of artificial acid rain, and this character might be a good criteria for early diagnosis of acid rain injury. The differences of soil acidity were significant among the treatments for all species. Contact angles between needle surface and water droplet decreased with decrease of pH values of artificial acid rain. Measuring and comparing contact angles might be very good criteria for early diagnosis of acid rain injury.

  • PDF

Growth of Nanocrystalline Diamond on W and Ti Films (W 및 Ti 박막 위에서 나노결정질 다이아몬드의 성장 거동)

  • Park, Dong-Bae;Myung, Jae-Woo;Na, Bong-Kwon;Kang, Chan Hyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.4
    • /
    • pp.145-152
    • /
    • 2013
  • The growth behavior of nanocrystalline diamond (NCD) film has been studied for three different substrates, i.e. bare Si wafer, 1 ${\mu}m$ thick W and Ti films deposited on Si wafer by DC sputter. The surface roughness values of the substrates measured by AFM were Si < W < Ti. After ultrasonic seeding treatment using nanometer sized diamond powder, surface roughness remained as Si < W < Ti. The contact angles of the substrates were Si ($56^{\circ}$) > W ($31^{\circ}$) > Ti ($0^{\circ}$). During deposition in the microwave plasma CVD system, NCD particles were formed and evolved to film. For the first 0.5h, the values of NCD particle density were measured as Si < W < Ti. Since the energy barrier for heterogeneous nucleation is proportional to the contact angle of the substrate, the initial nucleus or particle densities are believed to be Si < W < Ti. Meanwhile, the NCD growth rate up to 2 h was W > Si > Ti. In the case of W substrate, NCD particles were coalesced and evolved to the film in the short time of 0.5 h, which could be attributed to the fact that the diffusion of carbon species on W substrate was fast. The slower diffusion of carbon on Si substrate is believed to be the reason for slower film growth than on W substrate. The surface of Ti substrate was observed as a vertically aligned needle shape. The NCD particle formed on the top of a Ti needle should be coalesced with the particle on the nearby needle by carbon diffusion. In this case, the diffusion length is longer than that of Si or W substrate which shows a relatively flat surface. This results in a slow growth rate of NCD on Ti substrate. As deposition time is prolonged, NCD particles grow with carbon species attached from the plasma and coalesce with nearby particles, leaving many voids in NCD/Ti interface. The low adhesion of NCD films on Ti substrate is related to the void structure of NCD/Ti interface.

THE STUDY BY USING THE COMPUTERIZED TOMOGRAPHY IMAGING IN ORDER TO ACCESS TO MANDIBULAR FORAMEN WHILE INFERIOR ALVEOLAR NERVE ANESTHESIA (하치조신경 마취시 하악공으로의 접근을 위한 전산화단층촬영을 통한 방사선적 연구)

  • Kim, Ji-Kwang;Gu, Hong;An, Jin-Suk;Kook, Min-Suk;Park, Hong-Ju;Oh, Hee-Kyun;Cho, Jin-Hyoung
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.32 no.6
    • /
    • pp.566-574
    • /
    • 2006
  • Purpose : This study was performed to provide an anatomical information of the mandibular ramus for the successful inferior alveolar nerve block. Three dimensional images were reconstructed from the computerized tomography (CT) and the anatomical evaluation of the mandibular ramus was done. Materials and methods : Sixty-four patients who had been taken the facial CT scans from 2000, Jan to 2003, June was selected. The patients who had the anterior or posterior teeth misssing, edentulous ridge, and jaw fracture were excepted. In the occulusal plane, the lingual surface angle (LSA) between the mid-sagittal plane and the mandibular molar lingual surface from the 2nd premolar to the 2nd molar, the inner ramal surface angle (IRSA), the maximum inner ramal surface angle (MxIRSA), and the outer ramal surface angle (ORSA) to the-mid sagittal plane were measured. The inner ramal surface angle in the ligular tip level (IRSA-L) and the outer ramal surface angle in the ligular tip level (ORSA-L), the ramal length (RL), and the anterior ramal length (ARL) were also measured in the lingular tip level. Results : In the lingular tip level, the mean IRSA-L and ORSA-L were $28.6{\pm}6.3^{\circ}$ and $17.9{\pm}4.9^{\circ}$ respectively. The larger was the IRSA, the larger was the ORSA. In the lingular tip level, the mean ramal length was 35.8${\pm}$3.4 mm. The larger was the IRSA-L, the shorter was the ramal length. On the lingular tip level, the mean anterior ramal length from anterior ramus to lingular tip was 19.6${\pm}$3.3 mm. when the ramal length was longer, the anterior ramal length was also longer. On the lingular tip level, there was positive correlation vetween the IRSA and the ORSA, negative correlation between the IRSA and the ramal length, and positive correlation between the ramal length and the lingular tip level to the anterior ramus. There was no statistical meaning of data between sex and age. Conclusion : In the clinical view of the results so far achieved, if the direction of needle is closer to posterior it is able to contact bone on lingular tip when the internal surface of ramus is wided outer.

Electrochemical Characteristics of Nanotubular Ti-25Nb-xZr Ternary Alloys for Dental Implant Materials

  • Byeon, In-Seop;Park, Seon-Young;Choe, Han-Cheol
    • Journal of Korean Dental Science
    • /
    • v.10 no.1
    • /
    • pp.10-21
    • /
    • 2017
  • Purpose: The purpose of this study was to investigate the electrochemical characteristics of nanotubular Ti-25Nb-xZr ternary alloys for dental implant materials. Materials and Methods: Ti-25Nb-xZr alloys with different Zr contents (0, 3, 7, and 15 wt.%) were manufactured using commercially pure titanium (CP-Ti), niobium (Nb), and zirconium (Zr) (99.95 wt.% purity). The alloys were prepared by arc melting in argon (Ar) atmosphere. The Ti-25Nb-xZr alloys were homogenized in Ar atmosphere at $1,000^{\circ}C$ for 12 hours followed by quenching into ice water. The microstructure of the Ti-25Nb-xZr alloys was examined by a field emission scanning electron microscope. The phases in the alloys were identified by an X-ray diffractometer. The chemical composition of the nanotube-formed surfaces was determined by energy-dispersive X-ray spectroscopy. Self-organized $TiO_2$ was prepared by electrochemical oxidation of the samples in a $1.0M\;H_3PO_4+0.8wt.%$ NaF electrolyte. The anodization potential was 30 V and time was 1 hour by DC supplier. Surface wettability was evaluated for both the metallographically polished and nanotube-formed surfaces using a contact-angle goniometer. The corrosion properties of the specimens were investigated using a 0.9 wt.% aqueous solution of NaCl at $36^{\circ}C{\pm}5^{\circ}C$ using a potentiodynamic polarization test. Result: Needle-like structure of Ti-25Nb-xZr alloys was transform to equiaxed structure as Zr content increased. Nanotube formed on Ti-25Nb-xZr alloys show two sizes of nanotube structure. The diameters of the large tubes decreased and small tubes increased as Zr content increased. The lower contact angles for nanotube formed Ti-25NbxZr alloys surfaces showed compare to non-nanotube formed surface. The corrosion resistance of alloy increased as Zr content increased, and nanotube formed surface showed longer the passive regions compared to non-treatment surface. Conclusion: It is confirmed that corrosion resistance of alloy increased as Zr content increased, and nanotube formed surface has longer passive region compared to without treatment surface.

Thermal Conductivity of Sand-Tire Rubber Mixtures According to Degree of Saturation: Effect of Hydrophobic Particles (포화도에 따른 모래-타이어칩 혼합토의 열전도도 변화: 입자의 소수성 영향)

  • Oh, Jiseok;Choo, Hyunwook
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.4
    • /
    • pp.7-18
    • /
    • 2024
  • Because of their mineral composition, tire chips have very low thermal conductivity compared with natural geomaterials, leading to the use of sand-tire rubber mixtures in thermally insulating applications. However, systematic studies evaluating factors affecting the thermal conductivity of sand-tire rubber mixtures have been very limited. Thus, this study investigated the thermal conductivity of sand-tire rubber mixtures with varying size ratios and tire chip fractions according to the degree of saturation (S). Specimens were prepared in insulated cells, and thermal needle probe tests were performed. In addition, the contact angle and solid surface free energy of sand-tire rubber mixtures were investigated. The results of this study revealed that the thermal conductivity decreased with increasing tire chip fraction but increased with increasing water content (or S). However, the trend of increasing thermal conductivity with S varied with the tire chip fraction, and the specimens with tire chip fraction > 0.4 clearly showed a delayed increase in thermal conductivity with increasing S. This reflected that hydrophobic particles (tire chip) affected the dependency of thermal conductivity on S because of the delayed formation of capillary water bridges, which served as additional thermal conduction paths with increased moisture content.