• Title/Summary/Keyword: contact angle hysteresis

Search Result 43, Processing Time 0.026 seconds

Transition of Rivulet Flow from Linear to Droplet Stream

  • Kim, Ho-Young;Kim, Jin-Ho;Kang, Byung-Ha;Lee, Seung-Chul;Lee, Jae-Heon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.3
    • /
    • pp.147-152
    • /
    • 2002
  • When a liquid is supplied through a nozzle onto a relatively non-wetting inclined solid surface, a narrow rivulet forms. There exist several regimes of rivulet flow depending on various flow conditions. In this paper, the fundamental mechanism behind the transition of a linear rivulet to a droplet flow is investigated. The experiments show that the droplet flow emerges due to the necking of a liquid thread near the nozzle. Based on the observation, it is argued that when the retraction velocity of a liquid thread exceeds its axial velocity, the bifurcation of the liquid thread occurs, and this argument is experimentally verified.

Thermally/Dynamically Stable Superhydrophobic ZnO Nanoparticles on Various Substrates

  • Lee, M.K.;Kwak, G.J.;Yong, K.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.360-360
    • /
    • 2011
  • We demonstrated the fabrication method of superhydrophobic nanocoating through a facile spin-coating and the chemical modification. The resulting coating showed a tremendous water repellency with a static water contact angle (CA) of 158$^{\circ}$ and a hysteresis of 1$^{\circ}$. The number of ZnO nanoparticle (NP) coating cycles affected on the surface roughness, which is key role for superhydrophobic surface, and thus the CA can be modulated by changing the ZnO NP coating cycles. The CA can be controlled by changing the carbon length of Self-Assembled Monolayers(SAM). This simple ZnO coating is substrate-independent including flexible surfaces, papers and cotton fabrics, which can effectively be used in various potential applications. We also observed the thermal and dynamic stabilities of SAM on ZnO nanoparticles. The superhydrophobicic surface maintained its superhydrophobic properties below 250$^{\circ}C$ and under dynamic conditions.

  • PDF

Movement of Liquid Metal Droplet in Channel by Continuous Electrowetting Effect (연속적 전기습윤 효과를 이용한 액체금속 액적의 채널 내 거동)

  • Baek, Seungbum;Won, Dong-Joon;Kim, Hojin;Kim, Joonwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.3
    • /
    • pp.217-223
    • /
    • 2016
  • In this paper, the movement of a liquid metal droplet in a channel by continuous electrowetting effect is analyzed. The channel is fabricated using two glass substrates and silicone rubber as spacers, and a mercury droplet and dilute sulfuric acid are added into the channel. The droplet is moved according to voltage applied at both ends of the channel through an electrolyte. According to the shape of the droplet and the applied voltage, the velocity of the droplet is changed. The velocity is proportional to the applied voltage and inversely proportional to the length of the droplet, both theoretically and experimentally. Contact angle hysteresis and a meniscus change were also found in the moving state. This implies the existence of a threshold in movement by Laplace pressure difference. The experiment indicated that the sliding angle was inversely proportional to the width of the droplet but that the voltage threshold was proportional to the width.

Shape Oscillation and Detachment of Droplet on Vibrating Flat Surface (진동하는 평판 위의 액적의 형상 진동 및 제거 조건에 대한 연구)

  • Shin, Young-Sub;Lim, Hee-Chang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.4
    • /
    • pp.337-346
    • /
    • 2014
  • This study aimed to understand the mode characteristics of a droplet subject to periodic forced vibration and the detachment of a droplet placed on a plate surface. An surface was coated with Teflon to clearly observe the behavior of a droplet. The contact angle between the droplet and surface and the hysteresis were found to be approximately $115^{\circ}C$ and within $25^{\circ}C$, respectively. The coating process was performed in a clean room that had an environment with a low level of contaminants and impurities such as air dust, detergents, and particles. To predict the resonance frequency of a droplet, theoretical and experimental approaches were applied. Two high-speed cameras were configured to acquire side and top views and thus capture different characteristics of a droplet: the mode shape, the detachment, the separated secondary droplet, and the waggling motion. A comparison of the theoretical and experimental results shows no more than 18 discrepancies when predicting the resonance frequency. These differences seem to be caused by contact line friction, nonlinear wall adhesion, and the uncertainty of the experiment. For lower energy inputs, the contact line of the droplet was pinned and the oscillation pattern was axisymmetric. However, the contact line of the droplet was de-pinned as the oscillation became more vigorous with increased energy input. The size of each lobe at the resonance frequency is somewhat larger than that at the neighboring frequency. A droplet in mode 2, one of the primary mode frequencies, exhibits vertical periodic movement as well as detachment and secondary ejection from the main droplet.

Water Repellency on a Nanostructured Superhydrophobic Carbon Fibers Network

  • Ko, Tae-Jun;Her, Eun-Kyu;Shin, Bong-Su;Kim, Ho-Young;Lee, Kwang-Ryeol;Hong, Bo-Ki;Kim, Sae-Hoon;Oh, Kyu-Hwan;Moon, Myoung-Woon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.224-224
    • /
    • 2012
  • For decades, carbon fiber has expanded their application fields from reinforced composites to energy storage and transfer technologies such as electrodes for super-capacitors and lithium ion batteries and gas diffusion layers for proton exchange membrane fuel cell. Especially in fuel cell, water repellency of gas diffusion layer has become very important property for preventing flooding which is induced by condensed water could damage the fuel cell performance. In this work, we fabricated superhydrophobic network of carbon fiber with high aspect ratio hair-like nanostructure by preferential oxygen plasma etching. Superhydrophobic carbon fiber surfaces were achieved by hydrophobic material coating with a siloxane-based hydrocarbon film, which increased the water contact angle from $147^{\circ}$ to $163^{\circ}$ and decreased the contact angle hysteresis from $71^{\circ}$ to below $5^{\circ}$, sufficient to cause droplet roll-off from the surface in millimeter scale water droplet deposition test. Also, we have explored that the condensation behavior (nucleation and growth) of water droplet on the superhydrophobic carbon fiber were significantly retarded due to the high-aspect-ratio nanostructures under super-saturated vapor conditions. It is implied that superhydrophobic carbon fiber can provide a passage for vapor or gas flow in wet environments such as a gas diffusion layer requiring the effective water removal in the operation of proton exchange membrane fuel cell. Moreover, such nanostructuring of carbon-based materials can be extended to carbon fiber, carbon black or carbon films for applications as a cathode in lithium batteries or carbon fiber composites.

  • PDF

Superhydrophobic/Superoleophobic Spray Coatings based on Photocurable Polyurethane Acrylate and Silica Nanoparticles (UV경화형 폴리우레탄 아크릴레이트와 실리카 나노입자를 이용한 초발수 및 초발유 스프레이 코팅)

  • Kim, Su Hyun;Lee, Seung Goo
    • Journal of Adhesion and Interface
    • /
    • v.21 no.2
    • /
    • pp.58-64
    • /
    • 2020
  • This paper describes a simple approach for preparing a superhydrophobic and superoleophobic coating via spraying the mixture of UV-curable polyurethane acrylate and silica nanoparticles dispersed in a solvent. The prepared surface structures can be controlled by changing the types of solvents, the concentration of the polymer, and the amount of spraying. Superhydrophobicity and superoleophobicity are quantified by measuring the contact angle of water and oil, respectively. We also demonstrate the mechanism of spray coating with maximized superhydrophobicity and superoleophobicity through the analysis of re-entrant surface structures. At the appropriate amount and the composition of mixed solutions, the contact angle hysteresis of water and oil on the prepared surface is less than 2° and 30°, respectively. In addition, it shows excellent water-repellent and oil-repellent properties such that the oil droplet bounces off the surface.

Surface modification of polypropylene membrane to improve antifouling characteristics in a submerged membrane-bioreactor: Ar plasma treatment

  • Zhou, Jin;Li, Wei;Gu, Jia-Shan;Yu, Hai-Yin
    • Membrane and Water Treatment
    • /
    • v.1 no.1
    • /
    • pp.83-92
    • /
    • 2010
  • To improve the antifouling characteristics of polypropylene hollow fiber microporous membranes in a submerged membrane-bioreactor for wastewater treatment, the surface-modification was conducted by Ar plasma treatment. Surface hydrophilicity was assessed by water contact angle measurements. The advancing and receding water contact angles reduced after the surface modification, and hysteresis between the advancing and receding water contact angles was enlarged after Ar plasma treatment due to the increased surface roughness after surface plasma treatment. After continuous operation in a submerged membrane-bioreactor for about 55 h, the flux recovery after water cleaning and the flux ratio after fouling were improved by 20.0 and 143.0%, while the reduction of flux was reduced by 28.6% for the surface modified membrane after 1 min Ar plasma treatment, compared to those of the unmodified membrane. Morphological observations showed that the mean membrane pore size after Ar plasma treatment reduced as a result of the deposition of the etched species; after it was used in the submerged membrane-bioreactor, the further decline of the mean membrane pore size was caused by the deposition of foulants. X-ray photoelectron spectroscopy and infrared spectroscopy confirmed that proteins and polysaccharide-like substances were the main foulants in the precipitate.

Surfactant-Induced Suppression of the Thermocapillary Flow in Evaporating Water Droplets (증발하는 물방울의 계면활성제에 의한 열모세관 유동 억제)

  • Yun, Sungchan;Kim, Tae Kwon;Lim, Hee Chang;Kang, Kwan Hyoung;Lim, Geunbae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.7
    • /
    • pp.695-701
    • /
    • 2013
  • The suppression of a thermocapillary flow (Marangoni flow) by a nonionic surfactant is experimentally investigated for evaporating pure water droplets on hydrophobic substrates. The experiment shows that as the initial concentration of the surfactant increases, the velocity and lifetime of the flow monotonically decrease. The result confirms the no-slip boundary condition at a liquid-air interface, which is explained on the basis of the previous model regarding the effect of surfactants on the no-slip condition. Interestingly, at an initial concentration much less than a critical value, it is found that depinning of the contact line occurs during the early stage of evaporation, which is ascribed to a reduction in the contact angle hysteresis owing to the presence of the Marangoni flow.

A Study on Water-Proof Characteristics of a Stainless Steel Mesh by Electrochemical Etching Process (전기화학 에칭 공정을 이용한 스테인리스 스틸 메쉬의 방수 특성 연구)

  • Lee, Chan;Kim, Ji Min;Kim, Hyungmo
    • Tribology and Lubricants
    • /
    • v.37 no.5
    • /
    • pp.189-194
    • /
    • 2021
  • A straightforward, yet effective surface modification method of stainless steel mesh and its interesting anti-wetting characteristics are reported in this study. The stainless steel mesh is electrochemically etched, and the specimen has both micro and nano-scale structures on its surface. This process transforms the two types of mesh specimens known as the regular and dense specimens into hydrophobic specimens without applying any hydrophobic chemical coating process. The fundamental wettability of the modified mesh is analyzed through a dedicatedly designed experiment to investigate the waterproof characteristics, for instance, the penetration threshold. The waterproof characteristics are evaluated in a manner that the modified mesh resists as high as approximately 2.7 times the pressure compared with the bare mesh, i.e., the non-modified mesh. The results show that the penetration threshold depends primarily on the advancing contact angles, and the penetration stop behaviors are affected by the contact angle hysteresis on the surfaces. The findings further confirm that the inexpensive waterproof meshes created using the proposed straightforward electrochemical etching process are effective and can be adapted along with appropriate designs for various practical applications, such as underwater devices, passive valves, and transducers. In general, , additional chemical coatings are applied using hydrophobic materials on the surfaces for the applications that require water-repelling capabilities. Although these chemical coatings can often cause aging, the process proposed in this study is not only cost-effective, but also durable implying that it does not lose its waterproof properties over time.

Microdroplet Impact Dynamics at Very High Velocity on Face Masks for COVID-19 Protection (코로나-19 보호용 페이스 마스크에서의 액적 고속 충돌 거동)

  • Choi, Jaewon;Lee, Dongho;Eo, Jisu;Lee, Dong-Geun;Kang, Jeon-Woong;Ji, Inseo;Kim, Taeyung;Hong, Jiwoo
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.282-288
    • /
    • 2022
  • Facial masks have become indispensable in daily life to prevent infection and spread through respiratory droplets in the era of the corona pandemic. To understand how effective two different types of masks (i.e., KF-94 mask and dental mask) are in blocking respiratory droplets, i) we preferentially analyze wettability characteristics (e.g., contact angle and contact angle hysteresis) of filters consisting of each mask, and ii) subsequently observe the dynamic behaviors of microdroplets impacting at high velocities on the filter surfaces. Different wetting properties (i.e., hydrophobicity and hydrophilicity) are found to exhibit depending on the constituent materials and pore sizes of each filter. In addition, the pneumatic conditions for stably and uniformly dispensing microdroplets with a certain volume and impacting behaviors associated with the impacting velocity and filter type change are systematically explored. Three distinctive dynamics (i.e., no penetration, capture, and penetration) after droplet impacting are observed depending on the type of filter constituting the masks and droplet impact velocity. The present experimental results not only provide very useful information in designing of face masks for prevention of transmission of infectious respiratory diseases, but also are helpful for academic researches on droplet impacts on various porous surfaces.