• Title/Summary/Keyword: contact - friction

Search Result 995, Processing Time 0.029 seconds

Crack Face Friction Effects on Mode II Stress Intensities for a Surface-Cracked Coating In Two-Dimensional Rolling $Contact^{\copyright}$ (구름접촉 하중시 코팅 표면에 발생한 균열면의 마찰을 고려한 모드II 전파거동에 관한 연구)

  • Moon Byung-Young;Kim Byeong Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.159-167
    • /
    • 2005
  • This work focuses on the effects of crack free friction on Mode II stress intensity factors, $K_{II}$, for a vertical surface crack in a two-dimensional finite element model of TiN/steel subject to rolling contact. Results indicate that maximum $K_{II}$ values, which occur when the load is adjacent to the crack, may be significantly reduced in the presence of crack face friction. The reduction is more significant for thick coatings than for thin. Crack extension and increased layer thickness result in increased $K_{II}$ values. The effect of crack face friction on compressive $K_I$ values appears negligible. Comparative results are presented for $MoS_2/steel$ and diamond-like carbon(DLC)/Ti systems.

Predictive Study of Rubber Friction Considering Large Deformation Contact (대변형 접촉을 고려한 고무 마찰 예측 연구)

  • Nam, Seungkuk
    • Tribology and Lubricants
    • /
    • v.34 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • This paper presents the analysis of friction master curves for a sliding elastomer on rough granite. The hysteresis friction is calculated using an analytical model that considers the energy spent during the local deformation of the rubber due to surface asperities. The adhesion friction is also considered for dry friction prediction. The viscoelastic modulus of the rubber compound and the large-strain effective modulus are obtained from dynamic mechanical analysis (DMA). We accurately demonstrate the large strain of rubber that contacts with road substrate using the GW theory. We found that the rubber block deforms approximately to 40% strain. In addition, the viscoelastic master curve considering nonlinearity (at 40% strain) is derived based on the above finding. As viscoelasticity strongly depends on temperature, it can be assumed that the influence of velocity on friction is connected to the viscoelastic shift factors gained from DMA using the time-temperature superposition. In this study, we apply these shift factors to measure friction on dry granite over a velocity range for various temperatures. The measurements are compared to simulated hysteresis and adhesion friction using the Kluppel friction theory. Although friction results in the low-speed band match well with the simulation results, there are differences in the predicted and experimental results as the velocity increases. Thus, additional research is required for a more precise explanation of the viscoelastic material properties for better prediction of rubber friction characteristics.

Proposal of Novel Friction Testing Method in Bulk Metal Forming (체적성형공정에서의 새로운 마찰시험법 제안)

  • Kang, S.H.;Yun, Y.W.;Lee, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.445-449
    • /
    • 2009
  • With the recent increase in the demand for the net-shape forming, numerical simulations are being commonly adopted to increase the efficiency and effectiveness of design of bulk metal forming processes. Proper consideration of tribological problems at the contact interface between the tool and workpiece is crucial in such simulations. In other words, lubrication and friction play important roles in metal forming by influencing the metal flow, forming load and die wear. In order to quantitatively estimate such friction condition or lubricant characteristic, the constant shear friction model is widely used for bulk deformation analyses. For this, new friction testing method based on the forward or backward extrusion process is proposed to predict the shear friction factor in this work. In this method, the tube-shaped punch pressurizes the workpiece so that the heights at the center and outer of punch (or mandrel) become different according to the friction condition. That is, the height at the center of punch is higher than that at the outer of the punch when the friction condition at the contact interface is severe. From this founding, the proposed friction testing method can be applied to effectively evaluate the friction condition in bulk metal forming processes.

  • PDF

Estimation of Real Area of Contact and Lubrication Regimes using Electric Contact Resistance (전기 저항을 이용한 실접촉 면적과 윤활 영역의 예측)

  • 이홍철;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.11-17
    • /
    • 2000
  • The electric contact resistance between ball and disk was measured to estimate the real area of contact under dry and lubrication conditions. The results from the measured constriction resistance using the hypothesis of a single circular contact was compared with those of Hertzian contact theory and hardness. The resistance correlated well with the asperity contact area and friction when the ball slides on the flat disk spreaded with lubricant film. Therefore, the constriction resistance method was useful to identify the lubrication regimes with respect to various loads and speeds. The results of this work will aid in better prediction of lubrication regimes with respect to the operating conditions.

  • PDF

Friction Transition Diagram Considering the Effects of Oxide Layer Formed on Contact Parts of TiN Coated Ball and Steel Disk in Sliding (미끄럼운동시 TiN코팅볼과 스틸디스크의 미끄럼접촉면에 형성되는 산화막의 영향을 고려한 마찰천이선도 작성에 대한 연구)

  • Cho, Chung-Woo;Park, Dong-Shin;Lee, Young-Ze
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.3
    • /
    • pp.335-342
    • /
    • 2003
  • In this study, the effects of oxide layer formed on the contact parts of TiN coated ball and steel disk in sliding are investigated. Also wear mechanism to from the oxide layer and the characteristics of the oxide layer formation are investigated. AISI 52100 steel ball is used for the substrate of coated ball specimens. Two types of coated ball specimens were prepared by depositing TiN coating with 1 and 4 ${\mu}{\textrm}{m}$ in coating thickness. AISI 1045 steel is used for the disk type counter-body. To investigate the effect of oxide layer on the contact parts of the two materials, the tests were performed both in air for forming oxide layer on the contact parts and in nitrogen environment to avoid oxidation. And to study the effects of surface roughness of counter-body, TiN coating thickness and contact load of sliding test on the characteristics of oxide layer formation on counter-body, various tests were carried out. From the results, the friction characteristics between the two materials was predominated by iron oxide layer that formed on wear track on counter-body and this layer caused the high friction. And the formation rate of the oxide layer on wear track increased as the real contact area between the two materials increased as the contact load increased, the TiN coating thickness decreased and the surface of counter-body smoothened.

Friction transition diagram considering the effects of oxide layer formed on contact parts of TiN coated ball and steel disk in sliding (TiN코팅된 볼과 스틸디스크의 미끄럼운동 시 접촉면에 형성되는 산화막의 영향을 고려한 마찰천이선도 작성에 대한 연구)

  • 조정우;박동신;임정순;이영제
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.109-116
    • /
    • 2001
  • In this study, the effects of oxide layer formed on the contact parts of TiN coated ball and steel disk in sliding are investigated. Also wear mechanism to form the oxide layer and the characteristics of the oxide layer formation are investigated. AIS152100 steel ball is used for the substrate of coated ball specimens. Two types of coated ball specimens were prepared by depositing TiN coating with 1 and 4um in coating thickness. AISI1045 steel is used for the disk type counter-body. To investigate the effect of oxide layer on the contact parts of the two materials, the tests were performed both in ambient for forming oxide layer on the contact parts and in nitride environment to avoid oxidation. And to study the effects of surface roughness of counter-body, TiN coating thickness and contact load of sliding test on the characteristics of oxide layer formation on counter-body, various tests were carried out. From the results, the friction characteristics between the two materials was predominated by iron oxide layer that formed on wear track on counter-body and this layer caused the high friction. And the formation rate of the oxide layer on wear track increased as the real contact area between the two materials increased as the contact load increased, the TiN coating thickness decreased and the surface of counter-body smoothened.

  • PDF

Binder Wrap Analysis considering Gravity, Contact and Friction (접촉과 마찰을 고려한 바인더 랩의 유한 요소 해석)

  • 유동진;이종민;전기찬
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.06a
    • /
    • pp.87-95
    • /
    • 1996
  • The stamping process consists of two stages : First, the blank is held by the blank holder and then it is further formed into the die cavity by punch stroke. In actual stamping process, the accurate prediction of binder wrap is an indispensable step in sheet metal forming analysis because the initial plastic buckling induced by improper die design is directly related with fatal defect at the final stage. In the present work, an approach including the gravity effect of blank material and proper consideration of contact and friction is proposed. Computations are carried out for some actual auto-body parts using 3D FEM code to investigate the validity of the proposed methodology. Comparisons with experimental results show that the suggested scheme can be effectively applied to the precise prediction of binder wrap for arbitrarily curved die faces in which gravity and contact effect must be taken into account.

Acceleration Ellipsoid of Multiple Cooperating Robots with Friction Contact (마찰력을 고려한 로봇의 가속도 타원 해석)

  • 이원희
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.10
    • /
    • pp.887-898
    • /
    • 2004
  • In this paper a mathematical framework fur deriving acceleration bounds from given joint torque limits of multiple cooperating robots are described. Especially when the different frictional contacts for every contact are assumed and the torque limits are given in 2-norm sense, we show that the resultant geometrical configuration for the acceleration is composed of corresponding parts of ellipsoids. Since the frictional forces at the contacts are proportional to the normal squeezing forces, the key points of the work includes how to determine internal forces exerted by each robot in order not to cause slip at the contacts while the object is carried by external forces. A set of examples composed of two robot systems are shown with point-contact-with-friction model and insufficient or proper degree of freedom robots.

The Behavior and Characterization Analysis of Elastomer Seal for High Speed Pneumatic Cylinder (고속 공기압 실린더의 거동 및 특성 해석 기술 연구)

  • Hur, Shin;Woo, Chang-Su;Kim, Dong-Soo;Kim, Young-Seok
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1215-1220
    • /
    • 2008
  • The aim of this paper is to perform a finite element analysis that will have the ability to predict the seal performance characteristics, such as deformation, contact load and friction and also is to provide a means of potential seal designs, which can reduce the time and cost of designing the performance of the seal. The material property tests of elastomer seal are performed to obtain the hyperelastic properties and The Mooney-Rivlin constants are determined from these test results. A 2D modelling of the seal cross section is performed to simulate the contact behavior between the seal on the piston and the cylinder bore under operation conditions. The deformation behavior, contact load and friction of an elastomer seal is analyzed by a finite element method which performs three analytic phases of interference fit, the variations of pneumatic pressure and piston movement under the operational conditions.

  • PDF

Influence of Frictional Behavior Depending on Contact Pressure on Springback at U Draw Bending (접촉 압력에 의한 마찰 특성 변화가 U 드로우 굽힘에서의 스프링백에 미치는 영향)

  • Han, S.S.
    • Transactions of Materials Processing
    • /
    • v.20 no.5
    • /
    • pp.344-349
    • /
    • 2011
  • Variation of contact pressure causes change of friction coefficient, which in turn changes stress distribution in the sheet being formed and final springback. In the present study, U-draw bending experiments were carried out under constant blank holding force(BHF) and different blank sizes, and finite element analysis was conducted with and without considering contact pressure effect on friction. When the BHF was sufficiently high, the degree of springback was different between constant blank holding pressure condition and that with varying blank holding pressure. Finite element analysis considering the influence of contact pressure effect on friction could explain the occurrence of springback.