• Title/Summary/Keyword: contact - friction

Search Result 997, Processing Time 0.026 seconds

The Characterization of the Resin Bonded Graphite Composite Bipolar Plate using Isotropic Graphite Powder for PEM Fuel Cell

  • Cho, Kwang-Youn;Riu, Doh-Hyung;Hui, Seung-Hun;Kim, Hong-Suk;Chung, Yoon-Jung;Lim, Yun-Soo
    • Carbon letters
    • /
    • v.8 no.4
    • /
    • pp.326-334
    • /
    • 2007
  • In this study, graphite composites were fabricated by warm press molding method to realize commercialization of PEM fuel cells. Graphite composites have been considered as alternative economic materials for bipolar plate of PEM fuel cells. Graphite powder that enables to provide electrical conductivity was selected as the main substance. The graphite powder was mixed with phenolic resin and the mixture was pressed using a warm press method. First of all, the graphite powder was pulverized with a ball mill for the dense packing of composite. As the ball milling time increases, the average size of particles decreases and the size distribution becomes narrow. This allows for improvement of the uniformity of graphite composite. However, the surface electrical resistivity of graphite composite increases as the ball milling time increases. It is due to that graphite particles with amorphous phase are generated on the surface due to the friction and collision of particles during pulverizing. We found that the contact electrical resistivity of graphite particles increases as the particle size decreases. The contact electrical resistivity of graphite powders was reduced due to high molding pressure by warm press molding. This leads to improvement of the mechanical properties of graphite composite. Hydrogen gas impermeability was measured with the graphite composite, showing a possibility of the application for bipolar plate in fuel cell. And, I-V curves of the graphite composite bipolar plate exhibit a similar performance to the graphite bipolar plate.

A Study for Analysis on Deformation of Rubble Mound Structure Using VOF and DEM Methods (VOF법과 DEM에 의한 사석구조물 변형예측모델과 그 적용성에 관한 연구)

  • Kim, Mi-Kum;Kim, Chang-Je
    • Journal of Navigation and Port Research
    • /
    • v.34 no.6
    • /
    • pp.435-440
    • /
    • 2010
  • A numerical model, which can compute deformation of rubble mound structures composed with various size materials, was proposed. In the numerical model, wave field into the mound structures was computed by CADMAS-SURF and the deformations of mound structures were computed by DEM. Interaction between wave field and sectional deformation of structure was considered and to present the variation of behaviors caused by various properties of materials, computation was carried out with random coefficients by Monte Carlo simulation method for contact stiffness and friction angle. The experiments were carried out with rubbles and glass balls with radius of 2.9cm, 2.6cm and 1.5cm. And the deformation characteristics of rubble mounds composed with various size materials were clarified. Furthermore the validity and the applicability of the model were discussed by comparing with the experimental results.

Fabrication and Characterization of Triboelectric Energy Harvester

  • Sung, Tae-Hoon;Lee, Jun Young;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.631-631
    • /
    • 2013
  • Battery has major drawbacks including its size and life expectancy, and environmental problem. As an alternative, energy harvesting is emerging as a potential solution to replace battery along with more energy-efficient IT devices. The idea of harnessing energy from our living environment is sustainable, semi-permanent, and eco-friendly. Also, unlike battery, energy harvester does not require much space to store energy. Therefore, energy harvesting can provide a better source of power for small, portable, and wireless devices. Among various ways of harvesting energy from our surroundings, triboelectricity is chosen due to its potential to be miniaturized, and efficient. Triboelectric effect occurs as two different materials with different polarity of charge separation come into contact through friction, and then become separated so that electric potential difference is achieved. In this research, such characteristic of triboelectricity is used as a way to convert ambient mechanical energy into electric energy.Series of recent researches have shown promising results that the triboelectric energy harvester can be simple and cost effective. However, sufficient electricity level required to operate mobile devices has not yet been achieved.In this research, our group focuses on the design and optimization of triboelectric energy harvesting device to enhance its output. By using maskless lithography to pattern Kapton film and silicon substrate, which is used as a mold for PDMS thin layer, and sputtering metal electrodes on each side, we fabricate and demonstrate different designs of triboelectric energy harvester that utilizes the contact electrification between a polymer thin film and a metal thin foil. In order to achieve optimized result, the output voltage and current are measured under diverse conditions, which include different surface structure and pattern, material, and the gap between layers.

  • PDF

Nano-Positioning of High-Power Ultrasonic Linear Motor Stage in High-Vacuum Environment (고진공 환경중 고출력 초음파 모터 이송 스테이지의 나노미터 위치 제어)

  • Kim, Wan-Soo;Lee, Dong-Jin;Lee, Sun-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1613-1622
    • /
    • 2010
  • In this paper, the ultraprecision positioning control of an ultrasonic linear motor in a high-vacuum environment is presented. The bolt-clamped Langivin type transducer (BLT) with the 3rd longitudinal; and 6th lateral vibration modes was developed, which was excited by using the Eigen resonance frequency for two vibration modes in order to generate stable and high power. In practical applications, however, even if a geometrical design has an Eigen frequency, discordance between both mode frequencies can be generated by the contact mechanism and because of manufacturing errors as well as environmental factors. Both mode frequencies were precisely matched by adjusting the impedence. By using this method, the BLT can be driven under any environmental conditions. The nominal characteristic trajectory following(NCTF) control method was adopted to control the positioning of the system in vacuum. The developed linear motor stage show high positioning accuracy with 5 nm.

Analysis of Permanent Magnet Eddy Current Loss by Permanent Magnet Attaching Method of Magnetic Gears (마그네틱 기어의 영구자석 부착방법에 따른 영구자석 와전류손실 분석)

  • Park, Eui-Jong;Kim, Sung-Jin;Jung, Sang-Yong;Kim, Yong-Jae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.6
    • /
    • pp.911-915
    • /
    • 2017
  • Recently, there has been an increasing interest in the non-contact power transmission method of magnetic gears. Since there is no mechanical contact, noise caused by friction can be reduced, and even if a sudden large force is applied, the impact of the gear is close to zero. Further, since the power is transmitted by the magnetic flux, it has high reliability. However, there is a problem that a loss due to a magnetic field due to use of a magnetic flux. The loss caused by the magnetic field of the magnetic gear is a joule loss called eddy current loss. In addition, the eddy current loss in the magnetic gear largely occurs in the permanent magnet, but it is a fatal loss to the permanent magnet which is vulnerable to heat. Particularly, magnetic gears requiring high torque density use NdFeB series permanent magnets, and this permanent magnets have a characteristic in which the magnetic force decreases as temperature increases. Therefore, in this paper, the eddy current loss of the permanent magnet according to the permanent magnet attaching method is analyzed in order to reduce the eddy current loss of the permanent magnet. We have proposed a structure that can reduce the eddy current loss through the analysis and show the effect of reducing the loss of the proposed structure.

Remanufacturing Process and Improvement in Fatigue Life of Spherical Roller Bearings (자동조심 롤러 베어링의 재제조 공정 및 피로수명 향상)

  • Darisuren, Shirmendagva;Amanov, Auezhan;Kim, Jun-Hyong;Lee, Seung-Chul;Choi, Gab-Su;Pyun, Young-Sik
    • Tribology and Lubricants
    • /
    • v.30 no.6
    • /
    • pp.350-355
    • /
    • 2014
  • This study proposes a sustainable bearing remanufacturing process using the ultrasonic nanocrystal surface modification (UNSM) technique. The UNSM technique is a newly developed and sophisticated surface modification technique that can increase the mechanical properties and improve the friction and wear performance of materials. Taking advantage of the bearing manufacturing process is the most significant way of optimizing the life of a bearing. The proper maintenance and usage of repaired bearings can increase their life to be equal to or greater than that of new bearings. This paper discusses the restoration of certain mechanical properties of worn, damaged, and discarded bearings, and suggests a remanufacturing process for used bearings, which can impart them with a lifespan equivalent to that of new bearings. The most damaged part of the discarded bearings is the raceway, which is the site of accumulated fatigue. The existing polishing or barrel finishing processes can recover the accumulated fatigue only partially. Rolling contact fatigue tests performed on UNSM-treated new and used specimens polished after $4{\times}10^6$ cycles reveal that UNSM-treated new specimens exhibit the longest fatigue life compared to other specimens. This study verifies the proposed complete fatigue recovery process, which can increase the fatigue life of used bearings to a level greater than that of new bearings.

Chemical Mechanical Polishing: A Selective Review of R&D Trends in Abrasive Particle Behaviors and Wafer Materials (화학기계적 연마기술 연구개발 동향: 입자 거동과 기판소재를 중심으로)

  • Lee, Hyunseop;Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.35 no.5
    • /
    • pp.274-285
    • /
    • 2019
  • Chemical mechanical polishing (CMP), which is a material removal process involving chemical surface reactions and mechanical abrasive action, is an essential manufacturing process for obtaining high-quality semiconductor surfaces with ultrahigh precision features. Recent rapid growth in the industries of digital devices and semiconductors has accelerated the demands for processing of various substrate and film materials. In addition, to solve many issues and challenges related to high integration such as micro-defects, non-uniformity, and post-process cleaning, it has become increasingly necessary to approach and understand the processing mechanisms for various substrate materials and abrasive particle behaviors from a tribological point of view. Based on these backgrounds, we review recent CMP R&D trends in this study. We examine experimental and analytical studies with a focus on substrate materials and abrasive particles. For the reduction of micro-scratch generation, understanding the correlation between friction and the generation mechanism by abrasive particle behaviors is critical. Furthermore, the contact stiffness at the wafer-particle (slurry)-pad interface should be carefully considered. Regarding substrate materials, recent research trends and technologies have been introduced that focus on sapphire (${\alpha}$-alumina, $Al_2O_3$), silicon carbide (SiC), and gallium nitride (GaN), which are used for organic light emitting devices. High-speed processing technology that does not generate surface defects should be developed for low-cost production of various substrates. For this purpose, effective methods for reducing and removing surface residues and deformed layers should be explored through tribological approaches. Finally, we present future challenges and issues related to the CMP process from a tribological perspective.

Analysis of Internal Pressure Capacity of Modular Containment Structure for Small Modular Reactor (소형 원자로용 모듈화 격납구조의 내압성능 분석)

  • Park, Woo-Ryong;Yhim, Sung-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.362-370
    • /
    • 2019
  • The internal pressure capacity of a modular containment structure requires analysis to prevent the release of radioactive material in the case of an accident. To analyze the capacity, FEM models were prepared while considering the tendon arrangements and the contact surfaces between precast concrete modules, and then static analyses were carried out. The changing characteristics in the displacement and stress under step-wise loading were analyzed, along with the effects of selected parameters. For comparison, the capacity of a monolithic containment structure was also analyzed. Parametric analyses were done to suggest ranges of parameters such as the tendon force, tendon spacing, tendon location in concrete thickness direction, friction coefficient, and concrete thickness. The tendon force and frictional force provide a combined effect between contact surfaces of modules. The same level of internal pressure capacity can be secured even in the modular containment structure as in the monolithic containment structure by increasing the tendon force with additional tendons.

Investigation of shear behavior of soil-concrete interface

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Marji, Mohammad Fatehi;Masoumi, Alireza
    • Smart Structures and Systems
    • /
    • v.23 no.1
    • /
    • pp.81-90
    • /
    • 2019
  • The shear behavior of soil-concrete interface is mainly affected by the surface roughness of the two contact surfaces. The present research emphasizes on investigating the effect of roughness of soil-concrete interface on the interface shear behavior in two-layered laboratory testing samples. In these specially prepared samples, clay silt layer with density of $2027kg/m^3$ was selected to be in contact a concrete layer for simplifying the laboratory testing. The particle size testing and direct shear tests are performed to determine the appropriate particles sizes and their shear strength properties such as cohesion and friction angle. Then, the surface undulations in form of teeth are provided on the surfaces of both concrete and soil layers in different testing carried out on these mixed specimens. The soil-concrete samples are prepared in form of cubes of 10*10*30 cm. in dimension. The undulations (inter-surface roughness) are provided in form of one tooth or two teeth having angles $15^{\circ}$ and $30^{\circ}$, respectively. Several direct shear tests were carried out under four different normal loads of 80, 150, 300 and 500 KPa with a constant displacement rate of 0.02 mm/min. These testing results show that the shear failure mechanism is affected by the tooth number, the roughness angle and the applied normal stress on the sample. The teeth are sheared from the base under low normal load while the oblique cracks may lead to a failure under a higher normal load. As the number of teeth increase the shear strength of the sample also increases. When the tooth roughness angle increases a wider portion of the tooth base will be failed which means the shear strength of the sample is increased.

Two-phase Finite Volume Analysis Method of Debris Flows in Regional-scale Areas (2상 유한체적모델 기반의 광역적 토석류 유동해석기법)

  • Jeong, Sangseom;Hong, Moonhyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.4
    • /
    • pp.5-20
    • /
    • 2022
  • To analyze the flow and density variations in debris flows, a two-phase finite volume model simplified with momentum equations was constructed in this study. The Hershel-Buckley rheology model was employed in this model to account for the internal and basal friction of debris flows and was utilized to analyze complex topography and entrainments of basal soil beds. In order to numerically solve the debris flow analysis model, a finite volume model with the Harten-Lax-van Leer-Contact method was used to solve the conservation equation for the debris flow interface. Case studies of circular dam failure, non-Newtonian fluid dam failure, and multiple debris flows were analyzed using the proposed model to evaluate shock absorption capacity, numerical isotropy, model accuracy, and mass conservation. The numerical stability and correctness of the debris flow analysis of this analysis model were proven by the analysis results. Additionally, the rate of debris flow with various rheological properties was systematically simulated, and the effect of debris flow rheological properties on behavior was analyzed.