• 제목/요약/키워드: contact - friction

검색결과 997건 처리시간 0.024초

자동차용 전장 커넥트 프레팅 마모 손상 평가 (Evaluation of Fretting Wear Damage of Electronic Connectors for the Automotive)

  • 장승규;김덕현;김진상;최성종;조현덕
    • 한국자동차공학회논문집
    • /
    • 제22권3호
    • /
    • pp.33-41
    • /
    • 2014
  • Fretting is a kind of surface degradation mechanism observed in mechanical components and structures. When two pieces of materials, pressed together by an external static load, are subjected to a transverse cyclic loading or various vibrations, so that one contacting face is relatively displaced cyclically parallel to the other face, wear of the mating surfaces occurs. These fretting damages may be observed in electrical connectors for automotive components, where there are special environments and various vibration conditions. This study aims to evaluate the usefulness of fretting test equipment that was developed for reliability test of electrical connector. Fretting tests were carried out using tin coated connectors and friction force, contact resistance, contact area and roughness of contact region were investigated. The following results that will be helpful to understand the fretting wear mechanism, increase process the contact resistance and contact area were obtained. (1) In the same frequency and slip amplitude, the friction force, roughness and contact area increased rapidly until about $10^3$ cycles, after which it was slightly changed. (2) In the various frequency and slip amplitude, the contact area increased with slip amplitude and cyclic numbers, but it did not depend on cyclic frequency. (3) The surface roughness of contact region did not depend on the cyclic frequency. From these results, the applicability of the fretting wear test equipment and reliability of connector were discussed.

New insights about ice friction obtained from crushing-friction tests on smooth and high-roughness surfaces

  • Gagnon, Robert E.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권3호
    • /
    • pp.361-366
    • /
    • 2018
  • Ice crushing occurs in many situations that involve a sliding frictional component such as sports involving ice-contact, ice interaction with ship hulls, and ice-on-ice sliding/crushing within glaciers and between interacting sea ice floes. Ice crushing-friction tests were conducted in the lab at $-10^{\circ}C$ using a set of acrylic ice-crushing platens that included a flat smooth surface and a variety of high-roughness surfaces with regular arrays of small prominences. The experiments were part of Phase II tests of the Blade Runners technology for reducing ice-induced vibration. Ice was crushed against the platens where the ice movement had both a vertical and a horizontal component. High-speed imaging through the platens was used to observe the ice contact zone as it evolved during the tests. Vertical crushing rates were in the range 10-30 mm/s and the horizontal sliding rates were in the range 4.14-30 mm/s. Three types of freshwater ice were used. Friction coefficients were extraordinarily low and were proportional to the ratio of the tangential sliding rate and the normal crushing rate. For the rough surfaces all of the friction coefficient variation was determined by the fluid dynamics of a slurry that flowed through channels that developed between leeward-facing facets of the prominences and the moving ice. The slurry originated from a highly-lubricating self-generating squeeze film of ice particles and melt located between the encroaching intact ice and the surfaces.

피스턴마찰에 미치는 각 인자의 영향 (The influence of various factors on piston friction)

  • 이종태;이성열
    • 오토저널
    • /
    • 제5권1호
    • /
    • pp.45-53
    • /
    • 1983
  • There exist many kinds of frictions in internal combustion engine such as piston ring and skirt, cam and tappet, bearing friction etc. Among them, the frictions between piston ring, skirt and cylinder are particular. These frictions for motoring test are differ from that of firing test even though the temperature of cooling water and lubricating oil keep identically. The frictions for firing test are increased due to combustion pressure and products. The precise calculation of the friction is difficult. But we can assume that the friction is governed by the viscosity of lubricating oil and gas pressure of cylinder. And the viscosity of lubricating oil is dependant on gas temperature of cylinder, so the piston friction may be governed by gas pressure and temperature of cylinder. In this treatise, we propose the method of evaluating piston friction under the condition of constant engine speed, and we analyzed the behaviours and influence of factors concerned with the piston friction for output correction when the inlet pressure and temperature were varied. The main results are as follows: 1) The behaviours on the inlet conditions for the contact force of the piston rings and the viscosity of the lubricating oil concerned with piston friction are found. 2) The essential point the these behaviours is dependant on the cyclic variation following to the inlet conditions. 3) According to our analysis, It was observed that the viscosity of lubricating oil is more effective than the contact force to the piston rings.

  • PDF

SEM 내부에 설치된 트라이보 시험기를 통한 금속 코팅의 실시간 마찰/마모 특성 분석 (Real Time Analysis of Friction/Wear Characteristics of Metal Coatings with a Tribo-tester Installed in an SEM)

  • 김해진;김대은;김창래
    • Tribology and Lubricants
    • /
    • 제34권6호
    • /
    • pp.318-324
    • /
    • 2018
  • This study aims to visualize the friction and wear behaviors of metal coatings in real time. The main mechanism of wear is identified by observing all the processes in which wear occurs. The friction coefficients of the moments are monitored to confirm the relationship between the friction and wear characteristics of the coating. Thin Ag coatings, which are several hundred nanometers in thickness, are prepared by depositing Ag atoms on silicon substrates through a sputtering method. A pin-on-disk-type tribo-tester is installed inside a scanning electron microscope (SEM) to evaluate the friction and wear characteristics of the Ag coating. A fine diamond pin is brought into contact with the Ag coating surface, and a load of 20 mN is applied. The contact pressure is calculated to be approximately 15 GPa. The moments of wear caused by the sliding motion are visualized, and the changes in the friction characteristics according to each step of wear generation are monitored. The Ag coating can be confirmed to exhibit a wear phenomenon by gradually peeling off the surface of the coating on observing the friction and wear characteristics of the coating in real time inside the SEM. This can be explained by a typical plowing-type wear mechanism.

마찰력현미경을 이용한 나노스케일 마멸시험 시 다이아몬드 탐침으로의 MoS2 마멸입자 전이현상 (Material Transfer of MoS2 Wear Debris to Diamond Probe Tip in Nanoscale Wear test using Friction Force Microscopy)

  • 송현준;임형우;성권일;안효석
    • Tribology and Lubricants
    • /
    • 제35권5호
    • /
    • pp.286-293
    • /
    • 2019
  • In friction and wear tests that use friction force microscopy (FFM), the wear debris transfer to the tip apex that changes tip radius is a crucial issue that influences the friction and wear performances of films and coatings with nanoscale thicknesses. In this study, FFM tests are performed for bilayer $MoS_2$ film to obtain a better understanding of how geometrical and chemical changes of tip apex influence the friction and wear properties of nanoscale molecular layers. The critical load can be estimated from the test results based on the clear distinction of the failure area. Scanning electron microscopy and energy-dispersive spectroscopy are employed to measure and observe the geometrical and chemical changes of the tip apex. Under normal loads lower than 1000 nN, the reuse of tips enhances the friction and wear performance at the tip-sample interface as the contact pair changes with the increase of tip radius. Therefore, the reduction of contact pressure due to the increase of tip radius by the transfer of $MoS_2$ or Mo-dominant wear debris and the change of contact pairs from diamond/$MoS_2$ to partial $MoS_2$ or Mo/$MoS_2$ can explain the critical load increase that results from tip reuse. We suggest that the wear debris transfer to the tip apex should be considered when used tips are repeatedly employed to identify the tribological properties of ultra-thin films using FFM.

미세입자의 트라이볼로지적 응용을 위한 마찰특성 고찰 (Study on the Frictional Characteristics of Micro-particles for Tribological Application)

  • 성인하;한흥구;공호성
    • Tribology and Lubricants
    • /
    • 제25권2호
    • /
    • pp.81-85
    • /
    • 2009
  • Interests in micro/nano-particles have been greatly increasing due to their wide applications in various fields such as environmental and medical sciences as well as engineering. In order to obtain a fundamental understanding of the tribological characteristics at particle-surface contact interface, frictional behaviors according to load/pressure and materials were obtained by using atomic force microscope(AFM) cantilevers with different stiffnesses and tips. Lateral contact stiffnesses were observed in various tip-surface contact situations. Experimental results show that stick-slip friction behavior occurs even when the colloidal probes with a particle of a few micrometers in diameter, which have a relatively large contact area and lack a well-shaped apex, were used. This indicates that atomic stick-slip friction may be a more common phenomenon than it is currently thought to be. Also, experimental results were investigated by considering the competition between the stiffness of the interatomic potential across the interface and the elastic stiffnesses of the contacting materials and the force sensor itself.

이종금속간마찰시 온도변화특성에 관한 연구 (Characteristics of temperature change in friction between different metals)

  • 신문교;이우환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제11권4호
    • /
    • pp.50-58
    • /
    • 1987
  • At present it has been cleared that even carefully polished surfaces have irregularities on them which are large compared with molecular dimensions by the progress of a scanning electron microscope. When two solids are placed together, the real area of contact is very small, so that the local pressure is high and, in general, exceeds the yield pressure of the metal. Plastic flow of the solid occurs at the summits of the irregularities so that the real area of contact is proportional to the applied load. There is adhesion at local resions of contact and the friction is, in a large measure, the force required to shear them. On this view point, the friction experiment with different specimens which are carbon steel, copper and constantan was attempted to know the characteristics of temperature change in contact with different metals. Various experiments are summerized as follows; 1) With metals of high melting point, momentary 1000 .deg. C may last below $10^{-4}$ of a second. It is thought that above phenomena back up previous adhesion theory in wear. 2) As a general rule, surface temperature in contact with different metals becomes high when the load increases while it is observed that surface temperature decreases when the load increases with shapes of specimens.

  • PDF

접촉각 측정과 AFM/LFM을 이용한 불화 유기박막의 특성 평가 (Characterization of Fluorocarbon Thin Films by Contact Angle Measurements and AFM/LFM)

  • 김준성;차남구;이강국;박진구;신형재
    • 마이크로전자및패키징학회지
    • /
    • 제7권1호
    • /
    • pp.35-40
    • /
    • 2000
  • Teflon-like fluorocarbon thin film was deposited on various substrates by vapor deposition using PFDA (perfluorodecanoic acid). The fluorocarbon films were characterized by static/dynamic contact angle analysis, VASE (Variable-angle Spectroscopic Ellipsometry) and AFM/LFM (Atomic/Lateral Force Microscopy). Based on Lewis Acid/Base theory, the surface energy ($S_{E}$) of the films was calculated by the static contact angle measurement. The work of adhesion (WA) between de-ionized water and substrates was calculated by using the static contact data. The fluorocarbon films showed very similar values of the surface energy and work of adhesion to Teflon. All films showed larger hysteresis than that of Teflon. The roughness and relative friction force of films were measured by AFM and LFM. Even though the small reduction of surface roughness was found on film on $SiO_2$surface, the large reduction of relative friction farce was observed on all films. Especially the relative friction force on TEOS was decreased a quarter after film deposition. LFM images showed the formation of "strand-like"spheres on films that might be the reason far the large contact angle hysteresis.

  • PDF

구와 평면간의 구름접촉거동에 관한 연구 (A Study on Rolling Contact Behaviors of a Flat Rough Surface with a Smooth Ball)

  • 김경모;정인성
    • 대한기계학회논문집
    • /
    • 제14권3호
    • /
    • pp.554-570
    • /
    • 1990
  • 본 연구에서는 동적인 상태에서 구름접촉 거동을 좀더 명확히 하기 위해서 마 찰의 발생기구가 탄성이력손실에 기인한다는 이론을 기초로 압축 코일스프링을 이용한 감쇠자유진동시스템으로 구성된 실험장치에 의해서 구의 직경, 수직하중, 평면만의 표 면거칠기를 변화시켜 구름접촉면의 감쇠특성을 검토하고 이로부터 구름마찰력과 대수 감쇠율을 구한 다음 대수감쇠율과 진폭의 관계를 이용해서 실험에 의한 새로운 접촉폭 산출방법을 제시하고 Hertz이론에 의한 접촉폭과 마찰이론의 역학적 해석에 의한 접촉 폭과 비교, 분석해 보았다.

제지용 형광증백제의 전이현상에 대한 기초연구 (Study on the Migration of Fluorescent Whitening Agents Used for Papermaking Process)

  • 이지영;김철환;성용주;김은혜;김재형;박태웅
    • 펄프종이기술
    • /
    • 제48권3호
    • /
    • pp.5-13
    • /
    • 2016
  • This study investigated the effects of different factors on the migration of a fluorescent whitening agent (FWA) from paper treated with FWAs to non-fluorescent papers. FWA migration experiments were carried out in vertical and friction contacts between the papers dyed with FWAs and non-fluorescent papers. During the experiments, we identified the effects of the addition and types of FWAs, contact time, temperature, and relative humidity (RH) on FWA migration. The fluorescence indices of the non-fluorescent papers were measured before and after the migration experiments, and the Student's t test, a statistical tool, was utilized to compare results from different migration experiments. In vertical contact experiments, FWA migration to non-fluorescent paper was observed at $30^{\circ}C$ and 70% RH; this was attributed to the high moisture content of the paper. FWA migration did not occur significantly at $23^{\circ}C$ and 50% RH. In the friction contact experiments, FWA migrations were identified at both temperature conditions and RH percentages. The addition and types of FWAs did not increase the fluorescence index of non-fluorescent papers. Therefore, it was concluded that the moisture content of paper and the friction contact affected FWA migration from the papers containing internal and surface FWAs.