• Title/Summary/Keyword: consumption efficiency

Search Result 2,980, Processing Time 0.028 seconds

Bandwidth - Power Optimization Methodology for SFB Filter Design

  • Shin, Hun-Do;Ryu, Seung-Tak
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.1
    • /
    • pp.88-98
    • /
    • 2012
  • In this paper, the relationship between the bandwidth (BW) and power efficiency of a source follower based (SFB) filter is quantitatively analyzed, and a design methodology for a SFB filter for optimized BW - power consumption is introduced. The proposed design methodology achieves a maximum BW at a target quality (Q) factor for the given power consumption constraint by controlling design factors individually. In order to achieve the target BW from the maximized BW, a tuning method is introduced. Through the proposed design methodology, a fourth order Butterworth filter was implemented in 0.18 ${\mu}m$ CMOS technology. The measured BW, power consumption, and IIP3 are 100 MHz, 33 ${\mu}W$, and 9 dBm, respectively. Compared with other filter structures, the measured results show high BW - power efficiency.

Energy Efficiency of Distributed Massive MIMO Systems

  • He, Chunlong;Yin, Jiajia;He, Yejun;Huang, Min;Zhao, Bo
    • Journal of Communications and Networks
    • /
    • v.18 no.4
    • /
    • pp.649-657
    • /
    • 2016
  • In this paper, we investigate energy efficiency (EE) of the traditional co-located and the distributed massive multiple-input multiple-output (MIMO) systems. First, we derive an approximate EE expression for both the idealistic and the realistic power consumption models. Then an optimal energy-efficient remote access unit (RAU) selection algorithm based on the distance between the mobile stations (MSs) and the RAUs are developed to maximize the EE for the downlink distributed massive MIMO systems under the realistic power consumption model. Numerical results show that the EE of the distributed massive MIMO systems is larger than the co-located massive MIMO systems under both the idealistic and realistic power consumption models, and the optimal EE can be obtained by the developed energy-efficient RAU selection algorithm.

Further Electrochemical Degradation of Real Textile Effluent Using PbO2 Electrode

  • Wang, Chao;Tian, Penghao
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.266-271
    • /
    • 2021
  • A commercial PbO2 electrode was adopted as the anode for the electrochemical degradation of the real textile effluent with the initial COD of 56.0 mg L-1 and the stainless steel plate as the cathode. The effect of the initial pH, the electrolyte flow rate and the cell voltage on the COD, the current efficiency and the energy consumption were investigated without the addition of NaCl or Na2SO4. The experimental results illustrated that the PbO2 electrode can reduce the COD of the textile effluent from 56.0 mg L-1 to 26.0 mg L-1 with the current efficiency of 86.1% and the energy consumption of 17.5 kWh kg-1 (per kilogram of degraded COD) under the optimal operating conditions. Therefore PbO2 electrode as the anode was promising to further electrochemically degrade the real textile effluent.

Numerical Analysis Research for Evaluating the Energy Efficiency of Electric Vehicles (전기자동차 에너지효율 평가를 위한 수치해석 연구)

  • Mingi Choi
    • Journal of ILASS-Korea
    • /
    • v.29 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • This paper is a numerical analysis study for evaluating the energy efficiency of electric vehicles. Currently, the methods for testing and evaluating the energy consumption efficiency of electric vehicles have limitations such as resources and time. Therefore, there is a need for research on developing models to predict the energy consumption efficiency of electric vehicles. In this study, a numerical analysis research is conducted to predict the energy efficiency of electric vehicles using a vehicle dynamics numerical analysis model. To validate the accuracy of the simulation model, it is compared the results of dynamometer tests with the simulation results and used the Unified Diagnostic Services (UDS) protocol to acquire internal data from the electric vehicle. It is ensured the reliability of the simulation model by comparing data such as motor speed, battery voltage, current, state of charge (SOC), regenerative braking power generation, and total driving distance of the test vehicle with dynamometer test data and simulation model results.

District Energy Use Patterns and Potential Savings in the Built Environment: Case Study of Two Districts in Seoul, South Korea

  • Lee, Im Hack;Ahn, Yong Han;Park, Jinsoo;Kim, Shin Do
    • Asian Journal of Atmospheric Environment
    • /
    • v.8 no.1
    • /
    • pp.48-58
    • /
    • 2014
  • Energy efficiency is vital to improve energy security, environmental and social sustainability, and economic performance. Improved energy efficiency also mitigates climate change by lowering greenhouse gas (GHG) emissions. Buildings are the single largest industrial consumer of energy and are therefore key to understanding and analyzing energy consumption patterns and the opportunities for saving energy at the district level in urban environments. This study focused on two representative boroughs in the major metropolitan area of Seoul, South Korea as a case study: Gandong-gu, a typical residential district, and Jung-gu, a typical commercial district. The sources of the energy supplied to the boroughs were determined and consumption patterns in different industry sectors in Seoul used to identify current patterns of energy consumption. The study analyzed the energy consumption patterns for five different building categories and four different sectors in the building using a bottom-up energy modeling approach. Electricity and gas consumption patterns were recorded for different building categories and monthly ambient temperatures in the two boroughs. Finally, a logarithmic equation was developed to describe the correlation between commercial activity and cooling energy intensity in Jung-gu, the commercial district. Based on these results, recommendations are made regarding the current energy consumption patterns at the district level and government energy policies are suggested to reduce energy consumption and, hence, greenhouse gas emissions, in both commercial and residential buildings.

A Study on The Performance and Fuel Economy of Diesel Vehicles According to Change in Fuel Properties (연료물성에 따른 경유 차량의 성능 및 에너지소비효율 연구)

  • Noh, Kyeong-Ha;Lee, Min-Ho;Kim, Ki-Ho;Lee, Jung-Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.667-675
    • /
    • 2018
  • Increasing emissions regulations and demand of high-efficiency cars that travels a lot of distance with less fuel, there is growing interest in Energy Consumption Efficiency. Korean energy consumption efficiency compute combined Fuel Economy by driven city & highway driving mode and present final Energy Consumption Efficiency as using 5-cycle correction formula. Energy consumption efficiency is computed Carbon-balance-method, when used burning fuel play a key role in vehicle performance & Energy Consumption Efficiency. In Korea, vehicle fuel is circulate by Petroleum and Petroleum Alternative Business Act, there is property difference in quality standard because petroleum sector's refine method or type of crude oil. It does not appear a big difference according to fuel, because it sets steady quality standard, it may affect the performance of automobile. Thus, in research We purchase a few diesel fuel which circulated in the market in summer season though directly-managed-gas station by petroleum sector, resolve property each of fuel, we compute Fuel Economy each of them. We analyze into change depend on applying for property as nowadays utilizing Energy Consumption Efficiency calculating formula of gasoline and diesel fuel. As result, Density each of sample fuel has a maximum difference roughly 0.9%, net heat value each of sample fuel has difference 1.6%, result of current Energy Consumption Efficiency each of sample fuel has a difference roughly 1% at city drive mode, 1.4% at highway drive mode. Result of use gasoline calculator formula shows less 6% result than nowadays utilizing Energy Consumption Efficiency calculating formula, each of sample's Energy Consumption Efficiency shows maximum roughly 1.4% result in city & highway drive mode.

Assessment of Water Productivity & Potential Water Consumption of Rice by Each Province (벼에 대한 지역별 물 생산성 및 잠재 물 소비량 평가)

  • Hur, Seung-Oh;Choi, Soonkun;Yeop, Sojin;Hong, Seong-Chang;Choi, Dong-Ho
    • Journal of Korean Society of Rural Planning
    • /
    • v.25 no.4
    • /
    • pp.27-33
    • /
    • 2019
  • Agricultural water for crops are faced with the need to improve the use efficiency due to the impact of climate change. Water productivity (WP) is known as a good indicator for assessing resources efficiency. This study was conducted to assess WP of rice and potential water consumption (PWC) as new indicator for water use efficiency assessment. The average of WP was 0.7 kg/㎥, and Jeonbuk had the highest WP as 0.83 kg/㎥. Kangwon and Kyungbuk had the lowest WP as 0.59 kg/㎥. PWC showed the same trend because of rice consumption per capita, but Total PWC considering population living in each province showed the different trend with PWC. Every year, the changing patterns of WP was increasing little by little, and the patterns of PWC was decreasing greatly than WP. These results mean that WP has been slowly improved through breed development and irrigation techniques, and PWC was affected by reduced rice consumption and WP increasing. PWC could also be useful as an indicator to compare the water use efficiency between provinces or nations.

Consumption Energy Analysis of Quadruped Walking Robot (4족 로봇의 에너지 소모량 분석)

  • Eom Han-Sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.134-139
    • /
    • 2006
  • A energy efficiency of quadruped walking robot has been studied mathematical modeling, dynamic analysis or simulation by consumption energy per period. In this paper, We used the quadruped walking robot Titan-VIII in order to carry out this experiment. The total moving length is about 2[m] , the stride length is 0.1, 0.2. 0.3, and walking period is changed by 1.0, 1.5, 2.0, 2.5 3.0[sec] Per each stride length. So consumption energy of 15 cases are measured. As a result of this experiment we obtained the best energy efficiency when stride length was 0.3[m], and Period was 1.5[sec].

IEEE 802.15.4 power efficiency analysis using high-speed Wireless Personal Area Network transceiver in the environment for Internet of Things

  • Woo, Eun-Ju;Moon, Yu-Sung;Kim, Jung-Won
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.878-881
    • /
    • 2018
  • In this paper, experiments through performance evaluation under real operation environment were conducted. Transceiver and microcontroller shows the characteristics for the amount of current consumption and software protocol was optimized by controlling the time of Report Attribute and electric current level. To reduce current consumption when using battery, with designing transmission of the same amount of data as soon as possible, power consumption efficiency was enhanced.

Survey and Analysis of Power Energy Usage of University Buildings (대학건축물의 전력에너지 사용량 조사 및 분석)

  • Youn, Nam Sik;Kim, Jeong Tai
    • KIEAE Journal
    • /
    • v.13 no.2
    • /
    • pp.27-32
    • /
    • 2013
  • For the past seven years, the increase in the energy consumption of universities in Korea has been 3.7 times higher than the overall increase in the energy consumption across Korea (22.5%). This is an example that shows that universities have been a massive source of greenhouse gases. Such an increase has been attributed to the new and expanded construction of architectural structures on campus. Many people argue that the increasing number of buildings may cause waste of energy and loss of efficiency. Therefore, this study was conducted as a preliminary study to derive energy efficiency measures for new university buildings. The two aspects of energy-saving as required by the eco-friendly structure certification standards have been applied to analyze the use of new/renewable energy and the energy consumption of new university buildings that have applied light density and light engineering methods. Based on these results, the major sources of energy of existing buildings and new university buildings were compared to comparatively discuss how effectively they improve energy performance.