• Title/Summary/Keyword: construction mechanics

Search Result 914, Processing Time 0.026 seconds

A novel WOA-based structural damage identification using weighted modal data and flexibility assurance criterion

  • Chen, Zexiang;Yu, Ling
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.445-454
    • /
    • 2020
  • Structural damage identification (SDI) is a crucial step in structural health monitoring. However, some of the existing SDI methods cannot provide enough identification accuracy and efficiency in practice. A novel whale optimization algorithm (WOA) based method is proposed for SDI by weighting modal data and flexibility assurance criterion in this study. At first, the SDI problem is mathematically converted into a constrained optimization problem. Unlike traditional objective function defined using frequencies and mode shapes, a new objective function on the SDI problem is formulated by weighting both modal data and flexibility assurance criterion. Then, the WOA method, due to its good performance of fast convergence and global searching ability, is adopted to provide an accurate solution to the SDI problem, different predator mechanisms are formulated and their probability thresholds are selected. Finally, the performance of the proposed method is assessed by numerical simulations on a simply-supported beam and a 31-bar truss structures. For the given multiple structural damage conditions under environmental noises, the WOA-based SDI method can effectively locate structural damages and accurately estimate severities of damages. Compared with other optimization methods, such as particle swarm optimization and dragonfly algorithm, the proposed WOA-based method outperforms in accuracy and efficiency, which can provide a more effective and potential tool for the SDI problem.

Numerical analysis of sheet pile wall structure considering soil-structure interaction

  • Jiang, Shouyan;Du, Chengbin;Sun, Liguo
    • Geomechanics and Engineering
    • /
    • v.16 no.3
    • /
    • pp.309-320
    • /
    • 2018
  • In this paper, a numerical study using finite element method with considering soil-structure interaction was conducted to investigate the stress and deformation behavior of a sheet pile wall structure. In numerical model, one of the nonlinear elastic material constitutive models, Duncan-Chang E-v model, is used for describing soil behavior. The hard contact constitutive model is used for simulating the behavior of interface between the sheet pile wall and soil. The construction process of excavation and backfill is simulated by the way of step loading. We also compare the present numerical method with the in-situ test results for verifying the numerical methods. The numerical analysis showed that the soil excavation in the lock chamber has a huge effect on the wall deflection and stress, pile deflection, and anchor force. With the increase of distance between anchored bars, the maximum wall deflection and anchor force increase, while the maximum wall stress decreases. At a low elevation of anchored bar, the maximum wall bending moment decreases, but the maximum wall deflection, pile deflection, and anchor force both increase. The construction procedure with first excavation and then backfill is quite favorable for decreasing pile deflection, wall deflection and stress, and anchor forces.

Structural damage identification based on transmissibility assurance criterion and weighted Schatten-p regularization

  • Zhong, Xian;Yu, Ling
    • Structural Engineering and Mechanics
    • /
    • v.82 no.6
    • /
    • pp.771-783
    • /
    • 2022
  • Structural damage identification (SDI) methods have been proposed to monitor the safety of structures. However, the traditional SDI methods using modal parameters, such as natural frequencies and mode shapes, are not sensitive enough to structural damage. To tackle this problem, this paper proposes a new SDI method based on transmissibility assurance criterion (TAC) and weighted Schatten-p norm regularization. Firstly, the transmissibility function (TF) has been proved a useful damage index, which can effectively detect structural damage under unknown excitations. Inspired by the modal assurance criterion (MAC), TF and MAC are combined to construct a new damage index, so called as TAC, which is introduced into the objective function together with modal parameters. In addition, the weighted Schatten-p norm regularization method is adopted to improve the ill-posedness of the SDI inverse problem. To evaluate the effectiveness of the proposed method, some numerical simulations and experimental studies in laboratory are carried out. The results show that the proposed method has a high SDI accuracy, especially for weak damages of structures, it can precisely achieve damage locations and quantifications with a good robustness.

Proposal of Reuse Method of Sorting Soil Produced in Treatment Process of Construction Waste (건설폐기물의 처리공정에서 생산된 선별토사의 활용 방안 제시)

  • Na, Chul-Sung;Kang, Han-Su;Park, Jung-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.111-116
    • /
    • 2009
  • In order to verify relevance propriety as material for improving and replacing agricultural land of soil(the rest is sorting soil) produced in treatment process of construction waste, this study executed physical, mechanics and soil analysis test with mixing sorting soil and farm land, crops rearing comparison test with replacing lower layer soil.

  • PDF

Reshoring effects on deflections of multi-shored flat plate systems under construction

  • Kang, Su-Min;Eom, Tae-Sung;Kim, Jae-Yo
    • Structural Engineering and Mechanics
    • /
    • v.45 no.4
    • /
    • pp.455-470
    • /
    • 2013
  • RC flat plates that have no flexural stiffness by boundary beams may be governed by a serviceability as well as a strength condition. A construction sequence and its impact on the distributions of construction loads among slabs tied by shores are decisive factors influencing immediate and long term performances of flat plate. Over-loading and tensile cracking in early-aged slabs significantly increase the deflection of a flat plate system under construction. A reshoring work may be helpful in reducing slab deflections by controlling the vertical distributions of construction loads in a multi-shored flat plate system. In this study, a change of construction loads by reshoring works and its effects on deflections of flat plate systems under construction are analyzed. The slab construction loads with various reshoring schemes are defined by a simplified method, and the practical calculation of slab deflections with considering construction sequences and concrete cracking effects is applied. From parametric studies, the reshoring works are verified to reduce construction loads and slab deflections.

CONSTRUCTION EQUIPMENT ACTIVITY RECOGNITION FROM ACCELEROMETER DATA FOR MONITORING OPERATIONAL EFFICIENCY AND ENVIRONMENTAL PERFORMANCE

  • Changbum R. Ahn;SangHyun Lee;Feniosky Pena-Mora
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.188-195
    • /
    • 2013
  • Construction operations generate a significant amount of air pollutant emissions, including carbon emissions. The environmental performance of construction operations is closely relevant to the operational efficiency of each resource employed, which indicates how efficiently each resource (e.g., construction equipment) is utilized. In this context, monitoring the operational efficiency of construction equipment provides key information in managing and improving the environmental performance and productivity of construction operations. In this paper, we report our efforts to measure the operational efficiency of construction equipment, using low-cost accelerometers. An experimental study and real-world case studies are conducted to demonstrate the feasibility of the proposed approach. The results have shown the potential of this approach as an economically feasible means of monitoring the environmental performance of construction operations.

  • PDF

Tuned vibration control in aeroelasticity of slender wood bridges

  • Tesar, Alexander
    • Coupled systems mechanics
    • /
    • v.1 no.3
    • /
    • pp.219-234
    • /
    • 2012
  • Tuned vibration control in aeroelasticity of slender wood bridges is treated in present paper. The approach suggested takes into account multiple functions in aeroelastic analysis and flutter of slender wood bridges subjected to laminar and turbulent wind flow. Tuned vibration control approach is presented with application on actual bridge. Some results obtained are discussed.

The coupling of complex variable-reproducing kernel particle method and finite element method for two-dimensional potential problems

  • Chen, Li;Liew, K.M.;Cheng, Yumin
    • Interaction and multiscale mechanics
    • /
    • v.3 no.3
    • /
    • pp.277-298
    • /
    • 2010
  • The complex variable reproducing kernel particle method (CVRKPM) and the FEM are coupled in this paper to analyze the two-dimensional potential problems. The coupled method not only conveniently imposes the essential boundary conditions, but also exploits the advantages of the individual methods while avoiding their disadvantages, resulting in improved computational efficiency. A hybrid approximation function is applied to combine the CVRKPM with the FEM. Formulations of the coupled method are presented in detail. Three numerical examples of the two-dimensional potential problems are presented to demonstrate the effectiveness of the new method.

A novel regression prediction model for structural engineering applications

  • Lin, Jeng-Wen;Chen, Cheng-Wu;Hsu, Ting-Chang
    • Structural Engineering and Mechanics
    • /
    • v.45 no.5
    • /
    • pp.693-702
    • /
    • 2013
  • Recently, artificial intelligence tools are most used for structural engineering and mechanics. In order to predict reserve prices and prices of awards, this study proposed a novel regression prediction model by the intelligent Kalman filtering method. An artificial intelligent multiple regression model was established using categorized data and then a prediction model using intelligent Kalman filtering. The rather precise construction bid price model was selected for the purpose of increasing the probability to win bids in the simulation example.

Study on the distribution law of stress deviator below the floor of a goaf

  • Li, Zhaolong;Shan, Renliang;Wang, Chunhe;Yuan, Honghu;Wei, Yonghui
    • Geomechanics and Engineering
    • /
    • v.21 no.3
    • /
    • pp.301-313
    • /
    • 2020
  • In the process of mining closely spaced coal seams, the problem of roadway arrangement in lower coal seams has long been a concern. By means of mechanical model calculation and numerical simulation postprocessing, the distribution of the stress deviator below the floor of a goaf and the evolution of the stress deviator in the vertical and horizontal directions are studied under the influence of horizontal stress. The results of this theoretical study and numerical simulation show that the stress deviator decreases exponentially with increasing depth from the floor below the coal side. With the increase in the horizontal stress coefficient λ, the stress deviator concentration area shifts. The stress deviator is concentrated within 10 m below the goaf and 15 m laterally from the coal side; thus, the magnitude of the surrounding rock stress deviator should be considered when planning the construction of a roadway in this area.