• Title/Summary/Keyword: construction joints

Search Result 607, Processing Time 0.024 seconds

Foundation Design the 151 story Incheon Tower in Reclamation Area

  • Abdelrazaq, Ahmad;Badelow, Frances;Kim, Sung-Ho;Park, Yung-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.157-171
    • /
    • 2009
  • A 151 storey super high-rise building located in an area of reclaimed land constructed over soft marine clay in Songdo, Korea is currently under design. This paper describes the design process of the foundation system of the supertall tower, which is required to support the large building vertical and lateral loads and to restrain the horizontal displacement due to wind and seismic forces. The behaviour of the foundation system due to these loads and foundation stiffness influence the design of the building super structure, displacement of the tower, as well as the raft foundation design. Therefore, the design takes in account the interactions between soil, foundation and super structure, so as to achieve a safe and efficient building performance. The site lies entirely within an area of reclamation underlain by up to 20m of soft to firm marine silty clay, which overlies residual soil and a profile of weathered rock. The nature of the foundation rock materials are highly complex and are interpreted as possible roof pendant metamorphic rocks, which within about 50m from the surface have been affected by weathering which has reduced their strength. The presence of closely spaced joints, sheared and crushed zones within the rock has resulted in deeper areas of weathering of over 80m present within the building footprint. The foundation design process described includes the initial stages of geotechnical site characterization using the results of investigation boreholes and geotechnical parameter selection, and a series of detailed two- and three-dimensional numerical analysis for the Tower foundation comprising over 172 bored piles of varying length. The effect of the overall foundation stiffness and rotation under wind and seismic load is also discussed since the foundation rotation has a direct impact on the overall displacement of the tower.

  • PDF

Evaluation of Flexural Strength for UHPC Deck Joints with Lap-Spliced Reinforced Steel Bar (UHPC 바닥판 철근겹침이음 연결부의 휨강도 평가)

  • Hwang, Hoon Hee;Yeo, In Soo;Cho, Keun Hee;Park, Sung Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.92-99
    • /
    • 2011
  • Ultra High Performance Concrete(UHPC) is a superior structural material with high strength and durability. Construction of light and slim structures is realized to apply this expectable new materials in practice. This research is a part of the project to develop UHPC precast deck system for hybrid cable stayed bridge. The main object of this study is to investigate behavior of the lap-spliced reinforced connection in UHPC. The major parameter considered in experimental plan was lap-spliced length. The 4-points bending test for 12 specimens were conducted to verify the effect of considered parameters. Test results show that the minimum value of lap spliced length of 300mm which specified in current korea high bridge design code was very conservative for UHPC precast deck system.

스테인레스강 Overlay 용접부의 Disbonding에 관한 연구 1

  • 이영호;윤의박
    • Journal of Welding and Joining
    • /
    • v.1 no.2
    • /
    • pp.45-52
    • /
    • 1983
  • Many pressure vessels for the hot H$\sub$2//H$\sub$2/S service are made of 2+1/4Cr-1Mo steel with austenitic stainless steel overlay to combat agressive corrosion due to hydrogen sulfide. Hydrogen dissolves in to materials during operation, and sometimes gives rise to unfore-seeable damages. Appropriate precautions must, therefore, be taken to avoid the hydrogen induced damages in the design, fabrication and operation stage of such reactor vessels. Recently, hydrogeninduced cracking (or Disbonding) was found at the interface between base metal and stainless weld overlay of a desulfurizing reactor. Since the stainless steel overlay weld metal is subjected to thermal and internal-pressure loads in reactor operation, it is desirable for the overlay weld metal to have high strength and ductility from the stand point of structural safety. In section III of ASME Boiler and Pressure Vessel Code, Post-Weld Heat Treatment(PWHT) of more than one hour per inch at over 1100.deg. F(593.deg. C) is required for the weld joints of low alloy pressure vessel steels. This heat treatment to relieve stresses in the welded joint during construction of the pressure vessel is considered to cause sensitization of the overlay weld metal. The present study was carried out to make clear the diffusion of carbon migration by PWHT in dissimilar metal welded joint. The main conclusion reached from this study are as follows: 1) The theoretical analysis for diffusion of carbon in stainless steel overlay weld metal does not agree with Fick's 2nd law but the general law of molecular diffusion phenomenon by thermodynamic chemical potential. 2) In the stainless steel overlay welded joint, the PWHT at 720.deg. C for 10 hours causes a diffusion of carbon atoms from ferritic steel into austenitic steel according to the theoretical analysis for carbon migration and its experiment. 3) In case of PWHT at 720.deg. C for 10 hours, the micro-hardness of stainless steel weld metal in bonded zone increase very highly in the carburized layer with remarkable hardening than that of weld metal.

  • PDF

Performance-based and damage assessment of SFRP retrofitted multi-storey timber buildings

  • Vahedian, Abbas;Mahini, Seyed Saeed;Glencross-Grant, Rex
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.3
    • /
    • pp.269-282
    • /
    • 2015
  • Civil structures should be designed with the lowest cost and longest lifetime possible and without service failure. The efficient and sustainable use of materials in building design and construction has always been at the forefront for civil engineers and environmentalists. Timber is one of the best contenders for these purposes particularly in terms of aesthetics; fire protection; strength-to-weight ratio; acoustic properties and seismic resistance. In recent years, timber has been used in commercial and taller buildings due to these significant advantages. It should be noted that, since the launch of the modern building standards and codes, a number of different structural systems have been developed to stabilise steel or concrete multistorey buildings, however, structural analysis of high-rise and multi-storey timber frame buildings subjected to lateral loads has not yet been fully understood. Additionally, timber degradation can occur as a result of biological decay of the elements and overloading that can result in structural damage. In such structures, the deficient members and joints require strengthening in order to satisfy new code requirements; determine acceptable level of safety; and avoid brittle failure following earthquake actions. This paper investigates performance assessment and damage assessment of older multi-storey timber buildings. One approach is to retrofit the beams in order to increase the ductility of the frame. Experimental studies indicate that Sprayed Fibre Reinforced Polymer (SFRP) repairing/retrofitting not only updates the integrity of the joint, but also increases its strength; stiffness; and ductility in such a way that the joint remains elastic. Non-linear finite element analysis ('pushover') is carried out to study the behaviour of the structure subjected to simulated gravity and lateral loads. A new global index is re-assessed for damage assessment of the plain and SFRP-retrofitted frames using capacity curves obtained from pushover analysis. This study shows that the proposed method is suitable for structural damage assessment of aged timber buildings. Also SFRP retrofitting can potentially improve the performance and load carrying capacity of the structure.

A Study on the Development of 3D printed garments for Fashion Show (패션쇼를 위한 3D 프린팅 의상 디자인 개발 연구)

  • Lee, Hyunseung
    • Fashion & Textile Research Journal
    • /
    • v.21 no.3
    • /
    • pp.267-276
    • /
    • 2019
  • This study develops 3D-printed-garment collections for a fashion show presentation. A design concept using traditional patterns that consisted of garments regarding the limitation of the printing technology was investigated in order to develop the collection. The structures of the connecting joints of the textile parts which could be easily and sturdily interconnected were invented. Wearability as garments that could be naturally worn on the human body were sought. As a result, four 3D-printed-garments were developed. The 1st garment composed of objects based on a 'Yeon-Dang-Cho'-pattern was constructed as a geometric robe style using a FDM 3D printer and transparent TPU filaments. The 2nd and 3rd 3D-printed-garments composed of an object based on a 'Boe-Sang-Hwa'-pattern was constructed as a distorted one-piece exaggerating the silhouettes of shoulders and waist parts as well as a straight asymmetric tunic style that used the same printer and material as the 1st garment. The last garment composed of an object based on a 'Boe-Sang-Hwa'-pattern printed using a SLA 3D printer and flexible-liquid-resin was constructed attaching the objects on the fabric material by the hot-press machine. The four developed garments were presented in the opening fashion show of 'the 6th International 3D-printing Korea Expo'. This study provides a basic case for related studies to adapt 3D-printing technology in textile pattern development of garment construction.

Structural Performance of Beam-to-Column Joint Types in Dapo-style Buildings of the Joseon Dynasty (조선시대 다포계 건축물의 결구형태별 구조성능 평가)

  • Yoon, Jeong-Hoon;Choi, Yun-Chul;Lee, Eun-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.8-14
    • /
    • 2019
  • In Korean traditional wooden architecture, joint performance varies with the material characteristics of timber, the form of joint, the precision of timber-trimming and the like. Case studies prove that the beam-to-column joint type has large influence on the degrees of deformation and spacing. This is not only true of single-story buildings, but also of large-scale multi-story buildings more apparently. Therefore, this study followed the process of examining to joint types, producing their specimens and testing their structural performance. As a consequence of structural test, the dovetail joint specimen showed the best outcomes of the maximum load and rigidity. Synthesizing the structural performances by respective forms of joints, the Doraegeoji dovetail joint specimen showed the higher performance, followed in order by the Doraegeoji mortise joint specimen and the Tongneoko dovetail joint specimen. The structural performance of a building varies with the characteristics by the shouldering forms of penetrating beams and with the joint types within the columns. This should be considered for the new construction or restoration of multi-story buildings, and be continuously researched henceforth.

Carbonation Reaction and Strength Development of Air Lime Mortar with Superplasticizer (고성능 감수제가 혼입된 기경성 석회 모르타르의 탄산화 반응 및 강도발현 특성)

  • Kang, Sung-Hoon;Hwang, Jong-Kook;Kwon, Yang-Hee
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.7
    • /
    • pp.179-186
    • /
    • 2019
  • Air lime is a traditional building material of Korea. It had been used in roofs, walls, floors and masonry joints of traditional buildings until the advent of Portland cement. However, due to its low strength and durability, the lime is currently avoided as a repair or restoration material for the preservation of architectural heritage. Furthermore, due to the current practice of using hydraulic materials such as Portland cement, understanding of the material characteristics of air lime is very poor in practice. In this context, this study intended to improve the mechanical properties of the air lime mortar by reducing water contents, and also the carbonation reaction of the mortar was quantitatively evaluated to clearly understand the characteristics of this material. Accordingly, air lime mortar with a water-to-binder ratio of 0.4 was manufactured using polycarboxylate-type superplasticizer. During the 7 days of sealed curing period, the mortar did not harden at all. In other words, there was no reaction required for hardening since it could not absorb carbon dioxide from the atmosphere. However, once exposed to the air, the compressive strength of the mortar began to rapidly increase due to the carbonation reaction, and the strength increased steadily until the 28th day; after then, the strength development was significantly slowed down. On the 28th day, the mortar exhibit a compressive strength of about 5 MPa, which is equivalent to the European standard regarding strength of hydraulic lime used for preservation of architectural heritage.

An Experimental Study on the Seismic Performance of Reinforced Concrete Exterior Beam-Column Joint with Steel Fiber Volume Fractions (강섬유 혼입률에 따른 철근콘크리트 외부 보-기둥 접합부의 내진성능에 대한 실험적 연구)

  • Lee, Jang-Jae;Bae, Baek-Il;Choi, Chang-Sik
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.4
    • /
    • pp.15-23
    • /
    • 2018
  • The purpose of this study is to evaluate the anchorage capacity of longitudinal bars for reinforced concrete exterior beam - column joints with steel fiber volume fractions. For this purpose, the steel fiber volume fraction was set to 0, 1, 2%, and the performance was compared with that of each other specimens. According to the test results, the maximum strength of EX-HK-NJR-0 decreased by 13% compared with the control specimen and EX-HK-NJR-1 decreased by 3% compared to the control specimen. However, when 2% of steel fiber was mixed, the maximum strength increased about 56% compared to the control specimen. The energy dissipation capacity of EX-HK-NJR-0 (when no transverse steel bars are placed) decreased by 61% compared to the control specimen. In addition, the energy dissipation capacity of the specimens with a steel fiber content of 1% decreased by 5% and 2% increased by 94% compared to control specimen. EX-HK-NJR-1,2 and the control specimen EX-HK-JR-0 experienced yielding of the reinforcing bars at the column interface before maximum strength development. However, when the EX-HK-NJR-0, the reinforcing bars at the column interface experienced yielding after maximum strength development. Therefore, reinforcement of steel fiber is considered to reduce the required development length for yielding of steel bars.

Evaluation of Three Support Shapes on Behavior of New Bolted Connection BBCC in Modularized Prefabricated Steel Structures

  • Naserabad, Alifazl Azizi;Ghasemi, Mohammad Reza;Shabakhty, Naser;Arab, Hammed Ghohani
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1639-1653
    • /
    • 2018
  • Bolted connections are suitable due to high quality prefabrication in the factory and erection in the workplace. Prefabrication and modularization cause high speed of erection and fabrication, high quality and quick return of investment. Their technical hitches transportation can be removed by prefabrication of joints and small fabrication of components. Box-columns are suitable members for bolted structures such as welded steel structures with moment frames in two directions etc., but their continual fabrication in multi-story buildings and performing the internal continuity plate in them will cause some practical dilemmas. The details of the proposal technique introduced here, is to remove such problems from the box columns. Besides, some other advantages include new prefabricated bolted beam-to-column connections referred to BBCC. This connection is a set of plates joined to columns, beams, support, and bolts. For a better understanding of its fabrication and erection techniques, two connection and one structural maquettes are made. The present work aims to study the cyclic behavior of connection numerically. To verify the accuracy of model, a similar tested connection was modelled. Its verification was then made through comparison with test results. The behavior of connection was evaluated for an exterior connection using three different support shapes. The effects of support shapes on rigidity, ductility, rotation capacity, maximum strength, four rad rotation strength were compared to those of the AISC seismic provision requirements. It was found that single beams support has all the AISC seismic provision requirements for special moment frames with and without a continuity plate, and box with continuity plate is the best support in the BBCC connection.

Experimental study on shear, tensile, and compression behaviors of composite insulated concrete sandwich wall

  • Zhang, Xiaomeng;Zhang, Xueyong;Liu, Wenting;Li, Zheng;Zhang, Xiaowei;Zhou, Yilun
    • Advances in concrete construction
    • /
    • v.11 no.1
    • /
    • pp.33-43
    • /
    • 2021
  • A new type of composite insulated concrete sandwich wall (ICS-wall), which is composed of a triangle truss steel wire network, an insulating layer, and internal and external concrete layers, is proposed. To study the mechanical properties of this new ICS-wall, tensile, compression, and shearing tests were performed on 22 specimens and tensile strength and corrosion resistance tests on 6 triangle truss joints. The variables in these tests mainly include the insulating plate material, the thickness of the insulating plate, the vertical distance of the triangle truss framework, the triangle truss layout, and the connecting mode between the triangle truss and wall and the material of the triangle truss. Moreover, the failure mode, mechanical properties, and bearing capacity of the wall under tensile, shearing, and compression conditions were analyzed. Research results demonstrate that the concrete and insulating layer of the ICS-wall are pulling out, which is the main failure mode under tensile conditions. The ICS-wall, which uses a graphite polystyrene plate as the insulating layer, shows better tensile properties than the wall with an ordinary polystyrene plate. The tensile strength and bearing capacity of the wall can be improved effectively by strengthening the triangle truss connection and shortening the vertical distances of the triangle truss. The compression capacity of the wall is mainly determined by the compression capacity of concrete, and the bonding strength between the wall and the insulating plate is the main influencing factor of the shearing capacity of the wall. According to the tensile strength and corrosion resistance tests of Austenitic stainless steel, the bearing capacity of the triangle truss does not decrease after corrosion, indicating good corrosion resistance.