• Title/Summary/Keyword: construction costs

Search Result 1,542, Processing Time 0.026 seconds

Development of Management Systems based on IDEF3 Modeling to Improve Owner's Competency of Implementing Green building Certification (친환경건축물인증 발주자업무 수행역량 제고를 위한 IDEF3 모델기반 관리체계 구축)

  • Park, Kyung-Rog;Yi, June-Seong
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.1
    • /
    • pp.52-62
    • /
    • 2013
  • Owners' efforts to acquire Green building certification, which started in 2002, have been rapidly increasing since 2006. The causes of the increased owners' interests are due to various incentives, legal obligation, and purpose of advertising. As project owners generally are deficient in capabilities and knowledge on how to deal with administrative works on certification, they tend to fulfill the minimum requirements for certification. However, effective administration process need capabilities of identifying individual making decision point and review information. The implementation of green building certification system is expected to provide comfort to both occupants and potential users. Furthermore it contributes to reducing energy costs throughout the phase of O&M. In addition, technology innovation in green industry can be obtained. Therefore, this study is intended to support owners in order that they can clarify certification tasks and make a rational decision-making in time. For this purpose, first of all, the major decision points were selected as the gateways of green building certification process. And then management system based on IDEF3 modeling was developed for supporting owners' decision-making performance. This management system will improve owners' overall capacity in handling all the tasks regarding the certification of Green building.

Investigation of Early-Age Concrete Strength Development Using Hardening Accelerator (경화촉진제를 사용한 콘크리트의 초기강도 발현 특성 검토)

  • Kim, Gyu-Yong;Kim, Yong-Ro;Park, Jong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.309-316
    • /
    • 2016
  • In this study, performance of hardening accelerator types which promote setting and hardening of cement has been reviewed in order to develop early age strength of concrete with compressive strength of 21~27 MPa after examination of strength development of the concrete at early age according to curing temperature and unit cement(binder) content. As results, soluble mineral salt showed better hardening acceleration effect than organic salt in the scope of this study. Also, hydration reaction accelerating effect of $C_3S$ by Soluble mineral salt is effective on development of early age compressive strength and it was shown that the Pt's hydration reaction accelerating effect was the best. Construction duration reduction can be expected by securing compressive strength for prevention of early aged freezing damage in 25hour-curing time under curing temperature at $15^{\circ}C$. Also, it was shown that compressive strength of specimen cured at $5^{\circ}C$ was similar with plain specimen cured at $10^{\circ}C$. Therefore, it is expected that fuel costs and carbon dioxide can be reduced when the same construction duration is considered.

Studies on the Design of Forest Road Network for Mechanized Yarding Operations (II) - Optimal road spacing and density - (기계화(機械化) 집재작업(集材作業)을 위한 노망정비(路網整備)에 관(關)한 연구(硏究)(II) - 적정임도간격(適正林道間隔) 및 임도밀도(林道密度) -)

  • Cha, Du Song;Cho, Koo Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.3
    • /
    • pp.299-310
    • /
    • 1994
  • This study was carried out to examine the optimal road spacing and road density to minimize the total harvesting cost(road construction cost plus yarding cost) for mechanized yarding system to roadside by one - and two-stage two-way in Forestry build-up region. Chunchon-kun, Kangwon-do. The estimated road construction costs were ranged from ten million won to sixty million won per km. The results have indicated that cable crane was appropriate for yarding machine by one-stage, two-way, and estimated optimal road spacing was 1,698m~4,192m, averaged 3,087m, and road density was 3.44m/ha~8.44m/ha, and averaged 5. 12m/ha. In hilly terrain, combination of medium yarder and Logging bogie was suited to yarding machine by two-stage, two-way, and calculated optimal road spacing was 1,483m~3,481m, averaged 2,589m, and road density was 4.05m/ha~9.46m/ha, averaged 5.90m/ha. In steep terrain, combination of medium yarder and jinsung winch was suited, and estimated optimal road spacing was 1,693m~3,982m, averaged 2,960m, and road density was 3.68m/ha~8.64m/ha, averaged 5.38m/ha.

  • PDF

Development of the Work Information Management System of Pavement Crack Sealing Using IT (정보기술을 활용한 도로면 크랙실링 작업정보 관리시스템 개발)

  • Byun, Woong-Ho;Oh, Se-Wook;Lee, Jeong-Ho;Kim, Young-Suk
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2006.11a
    • /
    • pp.613-618
    • /
    • 2006
  • Crack in Pavements have been continually increased aby water penetration Therefore, the cracks can result in deterioration of the pavements that could be extremely dangerous fro road users. Creak sealing work performed in outdoor is very dangerous, costly and labor intensive. To slove these problems, automated crack sealing systems have been developed. it Would be needed that work information related to crack sealing must be gathered in an effort to used for existing or future crack sealing work. Furthermore, work information related to crack sealing could be utilized in analyzing work productivity and condition. The primary objective of this study is to propose a PDA and Web-based system for work information management of crack sealing which enables to effectively interchange work information between head office and fieds, and to accurately collect work information. Finally, it is anticipated that the effective use of the developed PDA and web-based system would be able to effectively share work information, measure productivity, estimate costs as well as plan future work schedule.

  • PDF

Economic Evaluation on Geosynthetic Reinforced Abutment for Railways (토목섬유로 보강된 철도교대의 경제성 평가)

  • Kim, Dae Sang;Kim, Ung-Jin;Sung, Keun-Yeol;Kim, Hak-Mo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.508-517
    • /
    • 2018
  • This study evaluated the construction costs of 11 design cases to decrease the horizontal forces applied to an abutment. They include two kinds of abutment types, which are used to improve the backfill materials for reversed T-shaped abutment and geosynthehtic reinforced abutment for railways (RAR). In the first economic analysis, the internal friction angles of the backfill materials were increased from ${\Phi}=35^{\circ}$ to ${\Phi}=40^{\circ}$ and $50^{\circ}$ for a reversed T-shaped abutment. The second analysis examined cases with the design of a geosynthehtic RAR. When the friction angles were $40^{\circ}$ or $50^{\circ}$ after improvement of the backfill material, the reduction in the construction cost of the abutment was not as large (2.0-3.9%), even though the horizontal forces on the abutment were decreased by 18-48%. However, in the case of applying the RAR, a maximum cost reduction of 30% was achieved by decreasing the horizontal force to zero. The cost reduction results from the decreased wall thickness, base slab size, and the number of pile foundations for the abutment, as well as changing the material.

A Estimation of Soil Conversion Factor Using Digital Photogrammetry and 3D Laser Scanner (디지털사진측량 및 3D 레이저스캐너를 이용한 토랑환산계수의 산정)

  • Lee Jae-Kee;Jung Sung-Heuk;Lee Kye-Dong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.2
    • /
    • pp.227-234
    • /
    • 2006
  • Ministry of construction & transportation is operating for the soil and rock information system and is considered to accurate application of soil conversion factor that is essentially necessary for accurate calculation of earth volume. Since the balance of cutting earth in public work, the plan of spoil bank or borrow pit are directly related to construction costs, accurate calculation of earth volume and efficient scheme of haul are important. As such, this study has provided methods that can acquire information that is more rapid, applicable to job sites, and trustworthy by comparing resultant values of photogrammetry, laser scanning, or inside job site experimentations, and calculated soil conversion factor by applying photogrammetry and laser scanning methods for hard rock that has difficulty in calculating soil conversion factor. The study can provide alternatives that can resolve the problems of unbalanced earth volume that may arise in applying to plans the earth conversion factor that relies on planning books and experience without considering the characteristics of job site earth, and can establish its relevancy by calculating soil conversion factor for hard rock that has relative difficulties in doing inside or job site testing.

An Experimental Study of Bond Stress between Concrete and Various Kinds of FRP Plank used as a Permanent Formwork (영구거푸집으로 활용한 FRP 판의 종류에 따른 콘크리트와의 부착응력에 관한 실험적 연구)

  • Park, Chan-Young;Yoo, Seung-Woon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.92-103
    • /
    • 2015
  • Development of new concrete bridge deck system with FRP plank using as a permanent formwork and the main tensile reinforcement recently has been actively conducted. Concurrent use as a reinforcing material and a permanent formwork, it is possible to reduce the construction time and construction costs than the usual concrete slab. In this study, an experiment was carried out for the bond stress between cast-in-place concrete and the type of FRP plank using as a permanent formwork. The interfacial fracture energy that can be one of the most important parameters were evaluated for adhesion performance and bond stress to know the characteristics of the failure mechanism of the adhesion surface. Interfacial fracture energy of normal concrete is 0.24kN/m of GF11 case, in the case of GF21, 0.43kN/m appears, in the case of CF11 and GF31, 0.44kN/m and 0.46kN/m respectively it appeared. In case of RFCON, 0.52kN/m appears from GF12, the CF12 and GF22, 0.51kN/m and 0.36kN/m appeared each case.

Experimental Study on the Behavior of Building Hardware with Joint Details (접합 방법에 따른 하지철물 구조물의 거동에 관한 실험적 연구)

  • Hong, Seonguk;Kim, Seunghun;Baek, Kiyoul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.190-198
    • /
    • 2018
  • In recent years, non-welded building hardware has been installed by bolt assembly is used. The non-welded building hardware method can reduce accidents caused by welding, and can be constructed by bolt assembly, which can reduce labor costs and shorten the construction period. However, there is a need for a method to compensate for the occurrence of buckling at the time of construction. The purpose of this study is to evaluate the behavior of joints between steel pipe and fastener and to evaluate the behavior of joints of non-welded and welded hardware frame. As a result, it was found that the foundation steel structure without welded joints was deformed to a rotation angle of member much larger than the allowable interlayer displacement angle 0.01 to 0.02 required according to the seismic load rating in the seismic load resistance system.

Predicting the success of CDM Registration for Hydropower Projects using Logistic Regression and CART (로그 회귀분석 및 CART를 활용한 수력사업의 CDM 승인여부 예측 모델에 관한 연구)

  • Park, Jong-Ho;Koo, Bonsang
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.2
    • /
    • pp.65-76
    • /
    • 2015
  • The Clean Development Mechanism (CDM) is the multi-lateral 'cap and trade' system endorsed by the Kyoto Protocol. CDM allows developed (Annex I) countries to buy CER credits from New and Renewable (NE) projects of non-Annex countries, to meet their carbon reduction requirements. This in effect subsidizes and promotes NE projects in developing countries, ultimately reducing global greenhouse gases (GHG). To be registered as a CDM project, the project must prove 'additionality,' which depends on numerous factors including the adopted technology, baseline methodology, emission reductions, and the project's internal rate of return. This makes it difficult to determine ex ante a project's acceptance as a CDM approved project, and entails sunk costs and even project cancellation to its project stakeholders. Focusing on hydro power projects and employing UNFCCC public data, this research developed a prediction model using logistic regression and CART to determine the likelihood of approval as a CDM project. The AUC for the logistic regression and CART model was 0.7674 and 0.7231 respectively, which proves the model's prediction accuracy. More importantly, results indicate that the emission reduction amount, MW per hour, investment/Emission as crucial variables, whereas the baseline methodology and technology types were insignificant. This demonstrates that at least for hydro power projects, the specific technology is not as important as the amount of emission reductions and relatively small scale projects and investment to carbon reduction ratios.

Optimum Mix Proportion of the High Strength and Self Compacting Concrete Used Above-Ground LNG Storage Tank (지상식 LNG 저장탱크용 고강도 자기충전 콘크리트의 최적배합에 관한 연구)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.1
    • /
    • pp.99-107
    • /
    • 2011
  • This study is to performed to find the optimum mix proportion of the high strength and self compacting concrete for the above-ground LNG storage tank construction and field application. If LNG storage tank wall thicknesscan be reduced, the construction cost and quality can be improved by using self-compacting high strength concrete with compressive strength 60~80 MPa. For this purpose, low heat cement (Type IV) and class F fly ash are used in concrete mix to control hydration heat, flowability, and viscosity. Mix design variables of unit water, fly ash replacement ratio, water-binder ratio, and fine aggregate ratio are selected and tested for material properties and manufacturing cost of the concrete. Also, fly ash replacement ratio is considered using confined water ratio test. The test results showed that the optimum mix proportion of the self-compacting high strength concrete characteristics are as follows. 1) In case of the concrete with specified compressive strength of 60 MPa, the optimum mix proportion is fly ash replacement ratio of 20% and water- binder ratio of 27~30%. 2) In case of the concrete with the strength of 80 MPa, the optimum mix proportion is fly ash replacement ratio of 10% and water-binder ratio 25%. But unit water and fine aggregate ratio are 165 $kg/m^3$ and $51{\pm}2%$, respectively, regardless of the traget concrete compressive strength range. Also, test results showed that concrete manufacturing cost of 60 MPa and 80 MPa concrete require additional costs of 14~22% and 33%, respectively, compared to the manufacturing cost of 40 MPa concrete. Therefore, application of the self-compacting high strength concrete has proven to be economical in the perspective of the material cost, quality control, and site management.