• 제목/요약/키워드: constrained mechanical system

검색결과 109건 처리시간 0.036초

A control allocation sterategy based on multi-parametric quadratic programming algorithm

  • Jeong, Tae-Yeong;Ji, Sang-Won;Kim, Young-Bok
    • 수산해양기술연구
    • /
    • 제49권2호
    • /
    • pp.153-160
    • /
    • 2013
  • Control allocation is an important part of a system. It implements the function that map the desired command forces from the controller into the commands of the different actuators. In this paper, the authors present an approach for solving constrained control allocation problem in vessel system by using multi-parametric quadratic programming (mp-QP) algorithm. The goal of mp-QP algorithm applied in this study is to compute a solution to minimize a quadratic performance index subject to linear equality and inequality constraints. The solution can be pre-computed off-line in the explicit form of a piecewise linear (PWL) function of the generalized forces and constrains. The efficiency of mp-QP approach is evaluated through a dynamic positioning simulation for a vessel by using four tugboats with constraints about limited pushing forces and found to work well.

대변형 해석에서 평활화를 이용한 사면체 요소망의 재조성

  • 권기환;채수원;신상엽
    • 대한기계학회논문집A
    • /
    • 제24권9호
    • /
    • pp.2397-2405
    • /
    • 2000
  • The remeshing is a method to replace a distorted mesh by a new mesh without interrupting the finite element calculation. The remeshing procedure in this paper refers to the rezoning, for which a sm oothing process is developed to alleviate the distortions of mesh. In the paper, an automatic finite element rezoning system with tetrahedral elements for large deformation analysis has been developed. Our smoothing process is composed of two steps, a surface smoothing and a volume smoothing. In the surface smoothing, checking the dihedral angle and projection on surface patch reduced the change of shape and nodes penetrating die. The constrained Laplacian smoothing has been employed for the volume smoothing process. The state variables are mapped from old mesh to new mesh by using volume coordinates within a tetrahedral element. All these procedures have been linked to the NIKE3D program As illustrated in the examples the overall strategy ensures a robust and efficient rezoning scheme for finite element simulation of metal-forming processes.

SUBOPTIMAL VIBRATION CONTROL OF FLEXIBLE ROBOT BEARING SYSTEM BY USING A MAGNETIC BEARING

  • Lee, Chong-Won;Kim, Jong-Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.255-259
    • /
    • 1989
  • A suboptimal output feedback controller is designed and applied to a flexible rotor bearing system in order to control the unstable or lilghtly damped vibrations. The reduced order model is the truncated modal equation of the distributed parameter system obtained through the singular perturbation. The instability problem arising from the spillover effects caused by the uncontrolled high frequency modes is prevented through the constrained optimization by incorporating the spillover term into the performance index. The efficiency of the proposed method is demonstrated experimentally with a flexible rotor by using a magnetic bearing.

  • PDF

Levy-type solution for analysis of a magneto-electro-elastic panel

  • Jia He;Xuejiao Zhang;Hong Gong;H. Elhosiny Ali;Elimam Ali
    • Steel and Composite Structures
    • /
    • 제46권6호
    • /
    • pp.719-729
    • /
    • 2023
  • This paper studies electro-magneto-mechanical bending studying of the cylindrical panels based on shear deformation theory. The cylindrical panel is constrained with two simply-supported edges at longitudinal direction and two clamped boundary conditions at circumferential direction. The governing equations are derived based on the principle of virtual work in cylindrical coordinate system. Levy-type solution of the governing equations is derived to reduce two dimensional PDEs to a 2D ODEs. The reduced ordinary differential equation is solved using the Eigen-value Eigen-vector method for the clamped-clamped boundary condition. The electro-magneto-mechanical bending results are obtained to show that every displacement, rotation and electromagnetic potentials how change with changes of initial electromagnetic potentials and mechanical loads along longitudinal and circumferential directions.

이미지 상관법의 서브 픽셀 알고리즘을 이용한 측정 분해능 향상에 관한 연구 (Study on Improvement of Measurement Precision in Digital Image Correlation Measurement Method by Using Subpixel Algorithms)

  • 김성종;강영준;최인영;홍경민;유원재
    • 한국정밀공학회지
    • /
    • 제32권12호
    • /
    • pp.1039-1047
    • /
    • 2015
  • Contact type sensors (e.g., displacement sensor and strain gauge) were typically used to evaluate the safety and mechanical properties in machines and construction. However, those contact type sensors have been constrained because of measurement problems such as surface roughness, temperature, humidity, and shape. The Digital Image Correlation (DIC) measurement system is a vision measurement system. This measurement system uses the taken image using a CCD camera and calculates the image correlation between the reference image and the deformed image under external force to measure the displacement and strain rates. In this paper, we discuss methods to improve the measurement precision of the digital image correlation measurement system. A tensile test was conducted to compare the precision improvement effects, by using the universal test machine and the DIC measurement system, with the use of subpixel algorithms, i.e., the Coarse Fine Search (CFS) algorithm and the Peak Finding (PF) algorithm.

제어입력 크기가 제한되는 자기동조 제어알고리즘의 구현에 관한 연구 (Implementation of the Self-tuning Control Algorithm with an Input- amplitude Constraint)

  • 장효환;정회범
    • 대한기계학회논문집
    • /
    • 제17권9호
    • /
    • pp.2153-2161
    • /
    • 1993
  • Self-tuning control algorithms for an input-amplitude constrained system are developed and implemented. Magnitude of control input for small motors is generally restricted to narrow bound due to actuator saturation. The gain-adjusted control algorithm and the bounded-gain control algorithm proposed in this study yield smoother control input variations within the magnitude constraints comparing with the existing Clarke's suboptimal control algorithm. In the gain-adjusted control algorithm, the feedforward gain is adjusted using maximum gain, while in the bounded-gain control algorithm, the feedforward gain is bounded using weighting factor. For the DC servo motor control, the system performances of the proposed algorithms are compared with those of the existing algorithm by computer simulation and experiment. It is shown that the input variations of the proposed algorithms are smoother as compared with the existing algorithm.

로보트를 이용한 힘제어에서의 기하학적 안정성에 관한 해석 (Analysis of Geometric Stability in Robot Force Control)

  • 이병주
    • 대한기계학회논문집
    • /
    • 제18권9호
    • /
    • pp.2284-2296
    • /
    • 1994
  • Force control of robotic mechanisms continues to be a challenging area. Previous implementation have seldom produced satisfactory results, and researchers in the past have experienced significant instability problems associated with their force controllers. In this study, a new stability factor in force control will be pointed out. When a manipulator is constrained to an environment(force-controlled), geometric instability due to the relationship between the manipulator configuration and the force-controlled direction is shown to be a significant factor in overall system stability. This exploratory study points out a rather intuitive, geometrically based stability factor in terms of an effective system stiffness and analyzes the phenomenon both analytically and graphically. Also, a stiffness control algorithm using the kinematic redundancy of a kinematically redundant manipulator is proposed to improve the overall stability in force control.

근사 합성법을 이용한 5-SS 멀티 링크 현가장치의 기구학적 설계 (Approximate Synthesis of 5-SS Multi Link Suspension System)

  • 김선평;심재경;안병의;이언구
    • 대한기계학회논문집A
    • /
    • 제24권11호
    • /
    • pp.2665-2671
    • /
    • 2000
  • Dimensional Synthesis, which is apart of kinematic synthesis, is to determine the dimensions of a mechanism of preconceived typer for a specified task and prescribed performance. In this paper, in an effort to provide designers with flexibility, a dimensional approximate synthesis method is presented for utilizing prescribed tolerance both the displacement and joint positions of a mechanism to be synthesized. For this, a constrained optimization problem is formulated with displacement parameters and joint positions as variables. The proposed method is applied to the synthesis of a 5-SS multi link suspension mechanism. The method discussed here, however, can be easily applied to any mechanism of which the kinematic constraint equations can be derived.

윈도우 환경하에서 근전도의 실시간 Silent Period 측정 시스템 설계 (A Design of Real Time Measurement System for EMG Silent Period Under Window Base)

  • 강병길;김태훈;이영석;김덕영;김세동;김성환
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권10호
    • /
    • pp.611-617
    • /
    • 2003
  • A mechanical or electrical stimulation to the mandibular symphysis during a maximal voluntary clenching of the teeth always produces a jaw jerk followed by a silent period (transient stops) in the masseteric EMG (electromyogram). Generally, a mechanical stimulation is followed by a single silent period, and an electrical stimulation is followed by multiple silent periods. In this paper, we propose a new algorithm for determining the duration of the masseter silent period. The decision approach in essentially based upon a segmentation algorithm consisted of variance filter, median filter and gaussian filter. The new adaptive digital notch filter using R-CLMS(reverse constrained least mean-squared) algorithm is proposed for the elimination of powerline(60Hz) noise. At the same time, we design a real time measurement system for the EMG silent period under Window base.

Dynamic Analysis of a Moving Vehicle on Flexible beam Structure (II) : Application

  • Park, Tae-Won;Park, Chan-Jong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제3권4호
    • /
    • pp.64-71
    • /
    • 2002
  • Recently, mechanical systems such as a high-speed vehicles and railway trains moving on flexible beam structures have become a very important issue to consider. Using the general approach proposed in the first part of this paper, it is possible to predict motion of the constrained mechanical system and the elastic structure, with various kinds of foundation supporting conditions. Combined differential-algebraic equation of motion derived from both multibody dynamics theory and finite element method can be analyzed numerically using a generalized coordinate partitioning algorithm. To verify the validity of this approach, results from the simply supported elastic beam subjected to a moving load are compared with the exact solution from a reference. Finally, parametric study is conducted for a moving vehicle model on a simply supported 3-span bridge.