• Title/Summary/Keyword: constant water content tests

Search Result 52, Processing Time 0.02 seconds

Relationship between In-situ Hydraulic Conductivity and Van Genuchten Parameters of Unsaturated Fractured Hornfels (불포화 균열 혼펠스의 현장 수리전도도와 반 게누텐 매개변수의 상관성)

  • Cheong, Jae-Yeol;Cho, HyunJin;Kim, Soo-Gin;Ok, Soonil;Kim, Kue-Young;Hamm, Se-Yeong
    • The Journal of Engineering Geology
    • /
    • v.30 no.2
    • /
    • pp.147-160
    • /
    • 2020
  • Unsaturated hydraulic conductivity of near-surface unconsolidated layers depends on the physical properties and water content of the unconsolidated layers. So far, many studies have been conducted on the unsaturated hydraulic conductivity of near-surface unconsolidated layers. However, researches on hydraulic conductivity of unsaturated fractured rocks have been relatively rare. In relation to the construction of a low/intermediate level radioactive waste surface-disposal facility, this study compared and analyzed van Genuchten parameters (α, n) in the laboratory and the hydraulic conductivity obtained in field tests for fractured hornfels at a radioactive-waste disposal site of Korea. The relationship between the field hydraulic conductivity and van Genuchten parameters using data from the ten depth intervals of three boreholes resulted in that the correlation coefficient (R) between the hydraulic conductivity and the van Genuchten parameter α was 0.7607, showing positive correlation whereas the R between the hydraulic conductivity and the van Genuchten shape-defining parameter n was -0.8720, showing negative correlation. Hence, this study confirmed the relationship between the field hydraulic conductivity and the van Genuchten unsaturated functions for the unsaturated fractured hornfels.

Analysis of Rainfall Infiltration Velocity for Unsaturated Soils by an Unsaturated Soil Column Test : Comparison of Weathered Gneiss Soil and Weathered Granite Soil (불포화토 칼럼시험을 통한 불포화토 내 강우침투속도 분석: 편마암 풍화토와 화강암 풍화토의 비교)

  • Park, Kyu-Bo;Chae, Byung-Gon;Kim, Kyeong-Su;Park, Hyuek-Jin
    • Economic and Environmental Geology
    • /
    • v.44 no.1
    • /
    • pp.71-82
    • /
    • 2011
  • The unsaturated soil column tests were carried out for weathered gneiss soil and weathered granite soil in order to obtain the relationship between rainfall intensity and infiltration velocity of rainfall on the basis of different unit weight conditions of soil. In this study, volumetric water content and pore water pressure were measured using TDR sensors and tensiometers at constant time interval. For the column test, three different unit weights were used as in-situ condition, loose condition and dense condition, and rainfall intensities were selected as 20 mm/h and 50 mm/h. In 20 mm/h rainfall intensity condition, average rainfall infiltration velocities for both gneiss and weathered granite soils were obtained as $2.854{\times}10^{-3}$ cm/s ~ $1.297{\times}10^{-3}$ cm/s for different unit weight values and $2.734{\times}10^{-3}$ cm/s ~ $1.707{\times}10^{-3}$ cm/s, respectively. In 50 mm/h rainfall intensity condition, rainfall infiltration velocities were obtained as $4.509{\times}10^{-3}$ cm/s ~ $2.016{\times}10^{-3}$ cm/s and $4.265{\times}10^{-3}$ cm/s ~ $3.764{\times}10^{-3}$ cm/s respectively. The test results showed that the higher rainfall intensity and the lower unit weight of soil, the faster average infiltration velocity. In addition, the weathered granite soils had faster rainfall infiltration velocities than those of the weathered gneiss soils except for the looser unit weight conditions. This is due to the fact that the weathered granite soil had more homogeneous particle size, smaller unit weight condition and larger porosity.