• Title/Summary/Keyword: constant angle

Search Result 936, Processing Time 0.032 seconds

Dynamic mechanism of rock mass sliding and identification of key blocks in multi-fracture rock mass

  • Jinhai Zhao;Qi Liu;Changbao Jiang;Zhang Shupeng;Zhu Weilong;Ma Hailong
    • Geomechanics and Engineering
    • /
    • v.32 no.4
    • /
    • pp.375-385
    • /
    • 2023
  • There are many joint fissures distributed in the engineering rock mass. In the process of geological history, the underground rock mass undergoes strong geological processes, and undergoes complex geological processes such as fracture breeding, expansion, recementation, and re-expansion. In this paper, the damage-stick-slip process (DSSP), an analysis model used for rock mass failure slip, was established to examine the master control and time-dependent mechanical properties of the new and primary fractures of a multi-fractured rock mass under the action of stress loading. The experimental system for the recemented multi-fractured rock mass was developed to validate the above theory. First, a rock mass failure test was conducted. Then, the failure stress state was kept constant, and the fractured rock mass was grouted and cemented. A secondary loading was applied until the grouted mass reached the intended strength to investigate the bearing capacity of the recemented multi-fractured rock mass, and an acoustic emission (AE) system was used to monitor AE events and the update of damage energy. The results show that the initial fracture angle and direction had a significant effect on the re-failure process of the cement rock mass; Compared with the monitoring results of the acoustic emission (AE) measurements, the master control surface, key blocks and other control factors in the multi-fractured rock mass were obtained; The triangular shaped block in rock mass plays an important role in the stress and displacement change of multi-fracture rock mass and the long fissure and the fractures with close fracture tip are easier to activate, and the position where the longer fractures intersect with the smaller fractures is easier to generate new fractures. The results are of great significance to a multi-block structure, which affects the safety of underground coal mining.

3-D Near Field Localization Using Linear Sensor Array in Multipath Environment with Inhomogeneous Sound Speed (비균일 음속 다중경로환경에서 선배열 센서를 이용한 근거리 표적의 3차원 위치추정 기법)

  • Lee Su-Hyoung;Choi Byung-Woong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.184-190
    • /
    • 2006
  • Recently, Lee et al. have proposed an algorithm utilizing the signals from different paths by using bottom mounted simple linear array to estimate 3-D location of oceanic target. But this algorithm assumes that sound velocity is constant along depth of sea. Consequently, serious performance loss is appeared in real oceanic environment that sound speed is changed variously. In this paper, we present a 3-D near field localization algorithm for inhomogeneous sound speed. The proposed algorithm adopt localization function that utilize ray propagation model for multipath environment with linear sound speed profile(SSP), after that, the proposed algorithm searches for the instantaneous azimuth angle, range and depth from the localization cost function. Several simulations using linear SSP and non linear SSP similar to that of real oceans are used to demonstrate the performance of the proposed algorithm. The estimation error in range and depth is decreased by 100m and 50m respectively.

Investigation on flutter stability of three-tower suspension bridges under skew wind

  • Xinjun Zhang;Xuan-Rui Pan;Yuhan Leng;Bingze Chen
    • Wind and Structures
    • /
    • v.38 no.1
    • /
    • pp.43-58
    • /
    • 2024
  • To ensure the flutter stability of three-tower suspension bridges under skew wind, by using the computational procedure of 3D refined flutter analysis of long-span bridges under skew wind, in which structural nonlinearity, the static wind action(also known as the aerostatic effect) and the full-mode coupling effect etc., are fully considered, the flutter stability of a three-tower suspension bridge-the Taizhou Bridge over the Yangtze River in completion and during the deck erection is numerically investigated under the constant uniform skew wind, and the influences of skew wind and aerostatic effects on the flutter stability of the bridge under the service and construction conditions are assessed. The results show that the flutter critical wind speeds of three-tower suspension bridge under service and construction conditions fluctuate with the increase of wind yaw angle instead of a monotonous cosine rule as the decomposition method proposed, and reach the minimum mostly in the case of skew wind. Both the skew wind and aerostatic effects significantly reduce the flutter stability of three-tower suspension bridge under the service and construction conditions, and the combined skew wind and aerostatic effects further deteriorate the flutter stability. Both the skew wind and aerostatic effects do not change the evolution of flutter stability of the bridge during the deck erection, and compared to the service condition, they lead to a greater decrease of flutter critical wind speed of the bridge during deck erection, and the influence of the combined skew wind and aerostatic effects is more prominent. Therefore, the skew wind and aerostatic effects must be considered accurately in the flutter analysis of three-tower suspension bridges.

Rear Vehicle Detection Method in Harsh Environment Using Improved Image Information (개선된 영상 정보를 이용한 가혹한 환경에서의 후방 차량 감지 방법)

  • Jeong, Jin-Seong;Kim, Hyun-Tae;Jang, Young-Min;Cho, Sang-Bok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.1
    • /
    • pp.96-110
    • /
    • 2017
  • Most of vehicle detection studies using the existing general lens or wide-angle lens have a blind spot in the rear detection situation, the image is vulnerable to noise and a variety of external environments. In this paper, we propose a method that is detection in harsh external environment with noise, blind spots, etc. First, using a fish-eye lens will help minimize blind spots compared to the wide-angle lens. When angle of the lens is growing because nonlinear radial distortion also increase, calibration was used after initializing and optimizing the distortion constant in order to ensure accuracy. In addition, the original image was analyzed along with calibration to remove fog and calibrate brightness and thereby enable detection even when visibility is obstructed due to light and dark adaptations from foggy situations or sudden changes in illumination. Fog removal generally takes a considerably significant amount of time to calculate. Thus in order to reduce the calculation time, remove the fog used the major fog removal algorithm Dark Channel Prior. While Gamma Correction was used to calibrate brightness, a brightness and contrast evaluation was conducted on the image in order to determine the Gamma Value needed for correction. The evaluation used only a part instead of the entirety of the image in order to reduce the time allotted to calculation. When the brightness and contrast values were calculated, those values were used to decided Gamma value and to correct the entire image. The brightness correction and fog removal were processed in parallel, and the images were registered as a single image to minimize the calculation time needed for all the processes. Then the feature extraction method HOG was used to detect the vehicle in the corrected image. As a result, it took 0.064 seconds per frame to detect the vehicle using image correction as proposed herein, which showed a 7.5% improvement in detection rate compared to the existing vehicle detection method.

Evaluation of the Usefulness of Assist Device for Rosenberg View Test (Rosenberg View 검사를 위한 보조기구의 유용성 평가)

  • Kong, Chang gi;Song, Jong Nam;Kim, In Soo;Han, Jae Bok
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.2
    • /
    • pp.129-138
    • /
    • 2020
  • Due to the nature of the Rosenberg Method, the patient needs to maintain posture for a certain period of time, and the joint space is observed in various forms depending on the angle of knee flexion, which causes difficulties in examination. In order to solve these problems, Image quality was evaluated in order to evaluate the usefulness of the assistive device by making the assistive device itself. SNR and CNR analysis about the presence or absence of an assistive device using the extremity phantom and the angle of the assistive device itself were not statistically significant(p < 0.05). As a result of measuring the distance between the right and left edges of the medial condyle based on the presence or absence of an assist device, and the absence of assist device (96.00±40.6 mm) and presence of an assist device (134.86±17.68 mm) were statistically significant (p <0.05). To find the aLDFA relationship about the femur and tibia, we measured the right and left aLDFA based on the presence or absence of assist device. As a result, the absence of the right-side aLDFA assist device (74.63°±4.87) and the presence of assist device (79.64°±3.65) were statistically significant (p <0.05). The absence of the left-side aLDFA assist device (76.39°±4.62) and the presence of assist device (79.64°±3.65) were statistically significant (p < 0.05). but, As a result of measuring the distance of the overlapping parts of the right and left proximal tibiofibular joint and the lateral condyle, There were no statistically significant differences between the right and left sides. In conclusion, we confirmed that we can obtain Diagnostically valuable images with a constant knee-to-knee spacing using an assist device we self-created. In addition, we could learn through aLDFA relationship between femur and tibial that the smaller the angle, the more medial condyle overlaps with JSW, We also confirmed the significance by deriving similar values on the normal range values of aLDFA using assist devices. However, it is considered necessary to pay attention to internal and external rotations in order to obtain good quality images by evaluating the distance of overlapping parts between proximal tibiofibular joint and lateral condyle.

Study on the Concentration Estimation Equation of Nitrogen Dioxide using Hyperspectral Sensor (초분광센서를 활용한 이산화질소 농도 추정식에 관한 연구)

  • Jeon, Eui-Ik;Park, Jin-Woo;Lim, Seong-Ha;Kim, Dong-Woo;Yu, Jae-Jin;Son, Seung-Woo;Jeon, Hyung-Jin;Yoon, Jeong-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.19-25
    • /
    • 2019
  • The CleanSYS(Clean SYStem) is operated to monitor air pollutants emitted from specific industrial complexes in Korea. So the industrial complexes without the system are directly monitored by the control officers. For efficient monitoring, studies using various sensors have been conducted to monitor air pollutants emitted from industrial complex. In this study, hyperspectral sensors were used to model and verify the equations for estimating the concentration of $NO_2$(nitrogen dioxide) in air pollutants emitted. For development of the equations, spectral radiance were observed for $NO_2$ at various concentrations with different SZA(Solar Zenith Angle), VZA(Viewing Zenith Angle), and RAA(Relative Azimuth Angle). From the observed spectral radiance, the calculated value of the difference between the values of the specific wavelengths was taken as an absorption depth, and the equations were developed using the relationship between the depth and the $NO_2$ concentration. The spectral radiance mixed gas of $NO_2$ and $SO_2$(sulfur dioxide) was used to verify the equations. As a result, the $R^2$(coefficient of determination) and RMSE(Root Mean Square Error) were different from 0.71~0.88 and 72~23 ppm according to the form of the equation, and $R^2$ of the exponential form was the highest among the equations. Depending on the type of the equations, the accuracy of the estimated concentration with varying concentrations is not constant. However, if the equations are advanced in the future, hyperspectral sensors can be used to monitor the $NO_2$ emitted from the industrial complex.

Kinematics and Grip Forces of Professionals, Amateurs and Novices during Golf Putting (퍼팅 시 프로와 아마추어, 초보 골퍼사이의 운동학적 변인과 그립 악력 비교)

  • Choi, Jin-Seung;Kim, Hyung-Sik;Kang, Dong-Won;Kim, Han-Su;Oh, Ho-Sang;Seo, Jeong-Woo;Yi, Jeong-Han;Lim, Young-Tae;Tack, Gye-Rae
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.4
    • /
    • pp.405-410
    • /
    • 2011
  • The purpose of this study was to compare the differences in kinematic variables and grip forces among professionals(PG), amateurs(AG), and novice group(NG) during golf putting. The participants consisted of 3 groups based on their playing ability: 8 professional golfers (handicap<5), 8 amateurs (handicap<18) and 8 novice. Each subject attempted 2.1m putts from the hole. 3D motion analysis system(Motion analysis Corp., USA) with 6 high speed cameras and grip force measurement system(Kim et al., 2007) were used to acquired kinematic and force data, respectively. To compare differences among groups, joint angles of upper limbs, trajectory and smoothness by jerk cost function(JC) of putter head and grip forces were used in this study. Results showed that there were significant differences among groups in most of variables such as joint angles, trajectory & smoothness of putter head, and distribution of grip force in both hands. In brief, we confirmed that putting stroke in PG was more accurate and smooth than that in other groups, especially NG, due to their well-controlled upper limbs and keeping grip forces constant in both hands. It can be concluded that due to skilled levels, fundamental differences of putting movement could be identified and these differences might be helpful for improving one's putting skills.

Experimental Results of New Ion Source for Performance Test

  • Kim, Tae-Seong;Jeong, Seung-Ho;Jang, Du-Hui;Lee, Gwang-Won;In, Sang-Yeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.269-269
    • /
    • 2012
  • A new ion source has been designed, fabricated, and installed at the NBTS (Neutral Beam Test Stand) at the KAERI (Korea Atomic Energy Research Institute) site. The goalis to provide a 100 keV, 2MW deuterium neutral beam injection as an auxiliary heating of KSTAR (Korea Super Tokamak Advanced Research). To cope with power demand, an ion current of 50 A is required considering the beam power loss and neutralization efficiency. The new ion source consists of a magnetic cusp bucket plasma generator and a set of tetrode accelerators with circular copper apertures. The plasma generator for the new ion source has the same design concept as the modified JAEA multi-cusp plasma generator for the KSTAR prototype ion source. The dimensions of the plasma generator are a cross section of $59{\times}25cm^2$ with a 32.5 cm depth. The anode has azimuthal arrays of Nd-Fe permanent magnets (3.4 kG at surface) in the bucket and an electron dump, which makes 9 cusp lines including the electron dump. The discharge properties were investigated preliminarily to enhance the efficiency of the beam extraction. The discharge of the new ion source was mainly controlled by a constant power mode of operation. The discharge of the plasma generator was initiated by the support of primary electrons emitted from the cathode, consisting of 12 tungsten filaments with a hair-pin type (diameter = 2.0 mm). The arc discharge of the new ion source was achieved easily up to an arc power of 80 kW (80 V/1000 A) with hydrogen gas. The 80 kW capacity seems sufficient for the arc power supply to attain the goal of arc efficiency (beam extracted current/discharge input power = 0.8 A/kW). The accelerator of the new ion source consists of four grids: plasma grid (G1), gradient grid (G2), suppressor grid (G3), and ground grid (G4). Each grid has 280 EA circular apertures. The performance tests of the new ion source accelerator were also finished including accelerator conditioning. A hydrogen ion beam was successfully extracted up to 100 keV /60 A. The optimum perveance is defined where the beam divergence is at a minimum was also investigated experimentally. The optimum hydrogen beam perveance is over $2.3{\mu}P$ at 60 keV, and the beam divergence angle is below $1.0^{\circ}$. Thus, the new ion source is expected to be capable of extracting more than a 5 MW deuterium ion beam power at 100 keV. This ion source can deliver ~2 MW of neutral beam power to KSTAR tokamak plasma for the 2012 campaign.

  • PDF

Effects of vertical head rotation on the posteroanterior cephalometric measurements (정모두부방사선사진 촬영시 두부의 수직회전에 따른 투사오차)

  • Koh, Eun-Hee;Lee, Ki-Heon;Hwang, Hyeon-Shik
    • The korean journal of orthodontics
    • /
    • v.33 no.2 s.97
    • /
    • pp.73-84
    • /
    • 2003
  • This study was performed to find out how much projection errors in the cephalometric measurements were made by vertical head rotation in taking posteroanterior cephalograms. 25 adults without any apparent facial asymmetry or severe sagittal skeletal discrepancy were selected and the posteroanterior cephalograms were taken with the head rotated $5^{\circ},\;10^{\circ}$ superior and inferior each to the reference $position(0^{\circ})$. The 7 height, 5 width and 6 angular measurements were taken at each 5 positions. Through the statistical analysis of all measurements taken at each rotated position, folowing results were obtained.1. The projection errors of height measurements were remarkably target than those of width or angular measure nents. f. Among the height measurements, the farther to the rotation axis the measurements were, the larger the projection errors were. 3. Among the width measurements, mandibular width and mandibular width of mandibular first molars showed significant differences between the values taken at each rotated position, while nasal width, maxillary width and intermolar width of maxillary first molars did not. 4. Among the angular measurements, the angle between horizontal reference line and the line that is connected to crista galli and antegonion or maxillare showed significant differences between the values taken at each rotated Position. The above results suggest that it is needed to the effort to keep constant head position for taking the useful posteroanterior cephalogra, because projection errors are caused by vertical head rotation.

A study on the development of simulation program for the small naturally aspirated four-stroke diesel engine (소형 4행정사이클 무과급 디이젤 기관의 성능 시뮤레이션 전산프로그램의 개발에 관한 연구)

  • 백태주;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.17-36
    • /
    • 1984
  • Since 1973, the competition on the development of fuel saving type internal combustion engines has become severe by the two times oil shock, and new type engines are reported every several months. Whenever these new type engines are developed, new designs are required and they will be offered in the market after performing the endurance test for a long time. But the engine market is faced with a heavy burden of finance, as the developing of a new engine requires tremendous expenses. For this reason, the computer simulation method has been lately developed to cope with it. The computer simulation method can be available to perform the reasonable research works by the theoretical analysis before carrying out practical experiments. With these processes, the developing expenses are cut down and the period of development is curtailed. The object of this study is the development of simulation computer program for the small naturally aspirated four-stroke diesel engine which is intended to product by the original design of our country. The process of simulation is firstly investigated for the ideal engine cycle, and secondly for the real engine cycle. In the ideal engine cycle, each step of the cycle is simulated by the energy balance according to the first law of thermodynamics, and then the engine performance is calculated. In the real cycle imulation program, the injection rate, the preparation rate and the combustion rate of fuel and the heat transfer through the wall of combustion chamber are considered. In this case, the injection rate is supposed as constant through the crank angle interval of injection and the combustion rate is calculated by the Whitehouse-Way equation and the heat transfer is calculated by the Annand's equation. The simulated values are compared with measured values of the YANMAR NS90(C) engine and Mitsubishi 4D30 engine, and the following conclusions are drawn. 1. The heat loss by the exhaust gas is well agree with each other in the lower load, but the measured value is greater than the calculated value in the higher load. The maximum error rate is about 15% in the full load. 2. The calculated quantity of heat transfer to the cooling water is greater than the measured value. The maximum error rate is about 11.8%. 3. The mean effective pressure, the fuel consumption, the power and the torque are well agree with each other. The maximum error is occurred in the fuel consumption, and its error rate is about 7%. From the above remarks, it may be concluded that the prediction of the engine performance is possibly by using the developed program, although the program needs to reform by adding the simulation of intake and exhaust process and assumping more reliable mechanical efficiency, volumetric efficiency, preparation rate and combustion rate.

  • PDF