• 제목/요약/키워드: constant angle

검색결과 935건 처리시간 0.027초

단상 직립 기동형 영구자석 동기기의 회로정수에 따른 특성 해석 (Characteristic Analysis of Single Phase Line-start Permanent Magnet Synchronous Motor Considering Circuit Parameters)

  • 강규홍;홍정표
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권6호
    • /
    • pp.262-270
    • /
    • 2003
  • In this paper, the characteristics of single-phase line-start permanent magnet synchronous motor driven by constant voltage are analyzed on d-q axis vector diagram and compared with that of current controlled motor. The coupled method of symmetrical coordinates and d-q axis voltage equation are applied to the analysis method like the analysis of single-phase induction motor. From the result of the analysis, it is seen that motors driven by constant voltage source have effects on not only the amplitude of current and torque but also current and current phase angle, so overall characteristics such as power factor and load angle are affected by circuit parameters. For precise analysis and design of single-phase line-start synchronous motor, its characteristics should be analyzed on d-q axis vector plan in consideration of the variation of circuit parameters.

소호각 제어를 이용한 Switched Reluctance Generator의 출력 전압 제어 (Output Voltage Control Method of a Switched Reluctance Generator using Turn-off Angle Control)

  • 김영조;전형우;김영석
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제50권7호
    • /
    • pp.356-363
    • /
    • 2001
  • A SRG (Switched Reluctance Generator) has many advantages such as high efficiency, low cost, high-speed capability and robustness compared with other of machine. But the control methods that have been adopted for SRGs are complicated. This paper proposes a simple control method using the PID controller which only controls turn-off angles while keeping turn-on angles of SRG constant. In order to keep the output voltage constant, the turn-off angle for load variations is controlled by using linearity between the generated current and turn-off angle since the reference generated current can be led through the voltage errors between the reference and the actual voltage. The suggested control method enhances the robustness of this system and simplifies the hardware and software by using only the voltage and the speed sensors. The proposed method is verified by experiments.

  • PDF

피치제어형 풍력발전시스템의 속도제어 (Speed Control of a Wind Turbine System Based on Pitch Control)

  • 임종환;허종철
    • 제어로봇시스템학회논문지
    • /
    • 제7권2호
    • /
    • pp.109-116
    • /
    • 2001
  • The paper presents a speed control algorithm for a full pitch-controlled wind turbine system. Torque of a blade generated by wind energy is a nonlinear function of wind speed, angular velocity, and pitch angle of the blade. The design of the controller, in general, is performed by linearizing the torque in the vicinity of the operating point assuming the angular velocity of the blade is constant. For speed control, however the angular velocity is on longer a constant, so that linearization of the torque in terms of wind speed and pitch angle is impossible. In this study, a reference pitch model is derived in terms of a wind speed, angular velocity, and pitch angle, which makes it possible to design a controller without linearizing the nonlinear torque model of the blade. This paper also suggests a method of designing a hydraulic control system for changing the pitch angle of the blade.

  • PDF

총체적 심미 악안면 성형수술 : I. 상하악 악교정 수술을 위한 새로운 연조직 심미기준선 (TOTAL ESTHETIC ORTHOGNATHIC SURGERY : I. NEW ESTHETIC LINES AND INTER-ESTHETIC LINE ANGLE)

  • 정필훈;송민석
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제15권4호
    • /
    • pp.329-337
    • /
    • 1993
  • Improvement of orthognathic surgical techniques make it possible to design esthetic surgical correction for total esthetic face. In order to find the esthetic line which guide esthetic surgical correction in patients of orthognathic surgery, cephalometric soft tissue analysis of esthetic faces were performed. In esthetic Korean young adults, 25 males and 25 females who were within 1 S.D. of E-line, ANB, P/A facial height ratio, were analyzed in natural position keeping their face eye level. 1. Sn position is constant in males and females. The Sn-N'-N' Vertical plane angle is $5.3^{\circ}$ in both sexes. Sn is positioned in front of 5 mm in female 7 mm in male from the N' vertical plane. 2. The Sn-Ls line make constant angle to horizontal plane with $72.5^{\circ}$ in both sexes, which is called "upper esthetic line". The Ls-Pg' line makes constant angle to $72.4^{\circ}$ (range $72.2^{\circ}$ in female to $72.6^{\circ}$ in male), which is called "lower esthetic line". 3. When inter-esthetic line angle (the Sn-Ls line to Ls-Pg' line) has $144.9^{\circ}$, lower third face has esthetic upper and lower lip. 4. In treatment planning, Sn is first corrected in proper position, and then upper and lower esthetic line are established with the angle of 144.9. The maxilla is moved to tangent Ls to the upper esthetic line, and mandible is moved to tangent Li and Pg' to the lower esthetic line, according to the "y"-shaped esthetic lines, then lower third face showes esthetics.

  • PDF

토크 컨버터의 1차원 성능 모델을 이용한 유동 각도 보정 계수에 관한 연구 (A Study on the Correction Factor of Flow Angel by using the One Dimentional Performance Model of Torque Converter)

  • 임원식
    • 대한기계학회논문집A
    • /
    • 제24권2호
    • /
    • pp.506-517
    • /
    • 2000
  • One dimensional performance model has been used for the design of torque converter. The model is based on the concept of constant mean flow path and constant flow angle. These constant-assumed para meters make the design procedure to be simple. In practice, some parameters are usually replaced with geometric raw data and, the constant experiential correction factors have been used to minimize the design error. These factors have no definite physical meaning and so they cannot be applied confidently to the other design condition. In this study, the detail dynamic model of torque converter is presented to establish the theoretical background of correction factors. To verify the validity of theoretical model, steady state performance test was carried out on the several input speed. The oil temperature effect on the performance is analysed and adjusted. The constant equivalent flow angles are determined at a part of performance region by comparing the theoretical model and the test data. The sensitivity of correction factors to the input speeds are studied and the change of torus flow is presented.

Behaviors of Anisotropic Fluids in the Vicinity of a Wedge

  • Kim, Youn-J.
    • Journal of Mechanical Science and Technology
    • /
    • 제14권6호
    • /
    • pp.690-698
    • /
    • 2000
  • The laminar boundary layer flow and heat transfer of anisotropic fluids in the vicinity of a wedge have been examined with constant surface temperature. The similarity variables found by Falkner and Skan are employed to reduce the stream wise-dependence in the coupled nonlinear boundary layer equations. The numerical solutions are presented using the fourth-order Runge - Kutta method and the distribution of velocity, micro-rotation, shear and couple stresses and temperature across the boundary layer are plotted. These results are also compared with the corresponding flow problems for Newtonian fluid over wedges. It is found that for a constant wedge angle, the skin friction coefficient is lower for micropolar fluid, as compared to Newtonian fluid. For the case of the constant material parameter K, however, the magnitude of velocity for anisotropic fluid is greater than that of Newtonian fluid. The numerical results also show that for a constant wedge angle with a given Prandtl number, Pr = I, the effect of increasing values of K results in increasing thermal boundary layer thickness for anisotropic fluid, as compared with Newtonian fluid. For the case of the constant material parameter K, however, the heat transfer rate for anisotropic fluid is lower than that of Newtonian fluid.

  • PDF

하이브리드/이중 선회제트 연소기에서 부분예혼합-예혼합 선회화염의 상호작용 (Interaction Between Partially Premixed and Premixed Swirl Flames in a Hybrid/Dual Swirl Jet Combustor)

  • 조준익;황철홍;이기만
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.7-8
    • /
    • 2012
  • The effects of interaction between partially premixed and premixed swirl flames on CO and NOx emissions were experimentally investigated using a hybrid/dual swirl jet combustor for a micro-gas turbine. Under the condition of constant angle ($45^{\circ}$) for outer swirl vane, the angle and direction of inner swirl vane installed for a partially premixed flame were varied as main parameters with a constant fuel flow rate for each nozzle. It was found that for all conditions, CO and NOx emissions were measured below 4 ppm and 15 ppm at 15% $O_2$, respectively, in a wide range of equivalence ratio (0.6~0.9). For co-swirl flows, CO emission increased dramatically as the angle of inner swirl vane increased from $15^{\circ}$ to $45^{\circ}$ near lean-flammability limit (i.e. equivalence ratio of 0.5). On the other hand, the case of swirl $angle=45^{\circ}$ provided the lowest NOx emission at higher equivalence ratios than 0.6. For counter-swirl flows, the case of swirl $angle=45^{\circ}$ extended the lean-flammability limit but higher NOx emissions were found compared to those of co-swirl flows. These results could be inferred by interaction between (inner) partially premixed and (outer) premixed swirl flames. However, these estimations were not clear yet because there was insufficient data on turbulent flow structure and fuel-air mixing in the present experimental approach.

  • PDF

Aerodynamic assessment of airfoils for use in small wind turbines

  • Okita, Willian M.;Ismail, Kamal A.R.
    • Advances in Energy Research
    • /
    • 제6권1호
    • /
    • pp.35-54
    • /
    • 2019
  • A successful blade design must satisfy some criterions which might be in conflict with maximizing annual energy yield for a specified wind speed distribution. These criterions include maximizing power output, more resistance to fatigue loads, reduction of tip deflection, avoid resonance and minimize weight and cost. These criterions can be satisfied by modifying the geometrical parameters of the blade. This study is dedicated to the aerodynamic assessment of a 20 kW horizontal axis wind turbine operating with two possible airfoils; that is $G{\ddot{o}}ttingen$ 413 and NACA 2415 airfoils (the Gottingen airfoil never been used in wind turbines). For this study parameters such as chord (constant, tapered and elliptic), twist angle (constant and linear) are varied and applied to the two airfoils independently in order to determine the most adequate blade configuration that produce the highest annual energy output. A home built numerical code based on the Blade Element Momentum (BEM) method with both Prandtl tip loss correction and Glauert correction, X-Foil and Weibull distribution is developed in Matlab and validated against available numerical and experimental data. The results of the assessment showed that the NACA 2415 airfoil section with elliptic chord and constant twist angle distributions produced the highest annual energy production.

Radiation Characteristics of a Probe-Fed Microstrip Patch Antenna on a Finite Grounded High Permittivity Substrate

  • Kwak, Eun-Hyuk;Yoon, Young-Min;Kim, Boo-Gyoun
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1738-1745
    • /
    • 2015
  • Radiation characteristics of a probe-fed rectangular microstrip patch antenna printed on a finite grounded high permittivity substrate are investigated systematically for various square grounded dielectric substrate sizes with several thicknesses and dielectric constants by experiment and full wave simulation. The effect of the substrate size on the radiation characteristics of a rectangular patch antenna is mainly determined by the effective dielectric constant of surface waves on a grounded dielectric substrate. As the effective dielectric constant of surface waves increases, the substrate sizes for the maximum broadside gain and the required onset for a large magnitude of squint angle decrease, while the variations of the broadside gain, the front-to-back ratio, and the magnitude of squint angle versus the substrate size increase due to the increase of the power of the surface wave.