• Title/Summary/Keyword: constant acceleration

Search Result 313, Processing Time 0.03 seconds

Critical earthquake input energy to connected building structures using impulse input

  • Fukumoto, Yoshiyuki;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.9 no.6
    • /
    • pp.1133-1152
    • /
    • 2015
  • A frequency-domain method is developed for evaluating the earthquake input energy to two building structures connected by viscous dampers. It is shown that the earthquake input energies to respective building structures and viscous connecting dampers can be defined as works done by the boundary forces between the subsystems on their corresponding displacements. It is demonstrated that the proposed energy transfer function is very useful for clear understanding of dependence of energy consumption ratios in respective buildings and connecting viscous dampers on their properties. It can be shown that the area of the energy transfer function for the total system is constant regardless of natural period and damping ratio because the constant Fourier amplitude of the input acceleration, relating directly the area of the energy transfer function to the input energy, indicates the Dirac delta function and only an initial velocity (kinetic energy) is given in this case. Owing to the constant area property of the energy transfer functions, the total input energy to the overall system including both buildings and connecting viscous dampers is approximately constant regardless of the quantity of connecting viscous dampers. This property leads to an advantageous feature that, if the energy consumption in the connecting viscous dampers increases, the input energies to the buildings can be reduced drastically. For the worst case analysis, critical excitation problems with respect to the impulse interval for double impulse (simplification of pulse-type impulsive ground motion) and multiple impulses (simplification of long-duration ground motion) are considered and their solutions are provided.

Dynamic Analysis to Select Main Parts of Four-Axis Palletizing Robots (4축 이적재 로봇의 주요 부품 선정을 위한 동적 해석)

  • Park, Il-Hwan;Jeon, Yong-Jae;Go, A-Ra;Seol, Sang-Seok;Hong, Dae-Sun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.12
    • /
    • pp.62-69
    • /
    • 2020
  • The demand for industrial robots is proliferating with production automation. Industrial robots are used in various fields, such as logistics, welding, and assembly. Generally, six degrees of freedom are required to move freely in space. However, the palletizing robot used for material management and logistics systems typically has four degrees of freedom. In designing such robots, their main parts, such as motors and reducers, need to be adequately selected while satisfying payload requirements and speed. Hence, this study proposes a practical method for selecting the major parts based on dynamic analysis using ADAMS. First, the acceleration torques for the robot motion were found from the analysis, and then the friction torques were evaluated. This study introduces a constant-speed torque constant instead of friction coefficient. The RMS torque and maximum power of each motor were found considering the above torques. After that, this study recommends the major specifications of all motors and reducers. The proposed method was applied to a palletizing robot to verify the suitability of the pre-selected main parts. The verification result shows that the proposed method can be successfully applied to the early design stage of industrial robots.

Development of Novel Method of Seismic Slope Stability Analysis (신(新) 유사정적 사면안정해석 기법 개발)

  • Yun, Seung;Park, Duhee;Lee, Seungho;Hwang, Youngchul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.1
    • /
    • pp.49-54
    • /
    • 2009
  • The seismic slope stability is most often evaluated by the pseudo-static limit analysis, in which the earthquake loading is simplified as static inertial loads acting in horizontal and/or vertical directions. The transient loading is represented by constant acceleration via the pseudostatic coefficients. The result of a pseudostatic analysis is governed by the selection of the value of the pseudostatic coefficient. However, selection of the value is very difficult and often done in an ad hoc manner without a sound physical reasoning. In addition, the maximum acceleration is commonly estimated from the design guideline, which cannot accurately estimate the dynamic response of a slope. There is a need to perform a 2D dynamic analysis to properly define the dynamic response characteristics. This paper develops a new hybrid pseudostatic method that links the modified one-dimensional seismic site response analysis and the pseudostatic algorithm. The modified site response analysis adjusts the density of the layers to simulate the change in mass and weight of the layers of the slope with depth. Multiple analyses were performed at various locations within the slope to estimate the change in seismic response of the slope. The calculated peak acceleration profiles with depth from the developed procedure were compared to those by the two-dimensional analyses. Comparisons show that the two methods result in remarkable match. The calculated profiles are used to perform pseudostatic analysis. The results show that use of peak or a fraction of acceleration at the surface can seriously underestimate or overestimate the factor of safety, and that the proposed procedure significantly enhances the reliability of a standard procedure.

  • PDF

Comparison vibration characteristics of several wireless endodontic handpieces (여러 근관치료용 무선 핸드피스의 진동양상 비교)

  • Lee, Bo-Kyung;Lee, Yoon;Park, Se-Hee;Cho, Kyung-Mo;Kim, Jin-Woo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.38 no.2
    • /
    • pp.81-89
    • /
    • 2022
  • Purpose: Wireless endodontic handpieces (WEH) are widely used in dental clinics due to their convenience and portability. This study aimed to compare the vibration magnitudes and patterns generated by five WEH. Materials and Methods: Vibration acceleration of five WEH (X-Smart IQ, E connect S, Endo A Class, ENDOIT, and TRAUS ENDO) in the rotary and reciprocating motion was measured with accelerometer The average vibration acceleration was analyzed using the t-test, Welch's ANOVA test, and Dunnett T3 test at P < 0.05. Results: In all WEH, the average vibration acceleration in reciprocating motion was significantly higher than that in rotary motion (P < 0.001). In rotary motion, repeated vibration graphs of constant amplitude were obtained without sudden changes in the magnitude of vibration, and the average vibration acceleration value was high in the order of X Smart IQ, Endo A Class, ENDOIT, E Connect S, and TRAUS ENDO (P < 0.001), there was no statistically significant difference between X Smart IQ and Endo A Class. In reciprocating motion, a vibration graph was obtained in which large amplitude peaks appear at specific points within one cycle are repeated. The average vibration acceleration value was highest in the order of X Smart IQ, E Connect S, Endo A class, ENDOIT, and TRAUS ENDO (P < 0.001). Conclusion: Regardless of the type of WEH, greater vibration occurred in the reciprocating motion than in the rotary motion (P < 0.001). In the reciprocating motion, there was a difference in vibration for all handpieces (P < 0.001).

Control and Design of a Arc Power Supply for KSTAR's the Neutral Beam Injection

  • Ryu, Dong-Kyun;Lee, Hee-Jun;Lee, Jung-Hyo;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.216-226
    • /
    • 2015
  • The neutral beam injection generate ultra-high temperature energy in the tokamak of nuclear fusion. The neutral beam injection make up arc power supply, filament power supply and acceleration & deceleration power supply. The arc power supply has characteristics of low voltage and high current. Arc power supply generate arc through constant output of voltage and current. So this paper proposed suitable buck converter for low voltage and high current. The proposed buck converter used parallel switch because it can be increased capacity and decrease conduction loss. When an arc generated, the neutral beam injection chamber occur high voltage. And it will break output capacitor of buck converter. Therefore the output capacitor was removed in the proposed converter. Thus the proposed converter should be designed for the characteristics of low voltage and high current. Also, the arc power supply should be guaranteed for system stability. The proposed parallel buck converter enables the system stability of the divided low output voltage and high current. The proposed converter with constant output be the most important design of the output inductor. In this paper, designed arc power supply verified operation of system and stability through simulation and prototype. After it is applied to the 288[kW] arc power supply for neutral beam injection.

Dynamic Behaviors of a Bridge under Seismic Excitations Considering Stiffness Degradation with Various Abutment-Soil Conditions (교대인접토체의 특성에 따른 강성저하를 고려한 교량시스템의 지진거동분석)

  • 김상효;마호성;경규혁;이상우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.347-354
    • /
    • 2000
  • The seismic behaviors of a bridge system with several simple spans are examined to see the effects of the longitudinal stiffness degradation due to abutment-soil interaction. The abutment-backfill system is modeled as one degree-of-freedom-system with nonlinear spring and linear damper. various soil-conditions surrounding the abutment such as loose sand, medium dense sand, and dense sand are considered in the bridge seismic analysis. The idealized mechanical model for the whole bridge system is modeled by adopting the multiple-degree-of-freedom system, which can consider components such as pounding phenomena, friction at the movable supports, rotational and translational motions of foundations, and the nonlinear pier motions. The stiffness of the abutment is found to be rapidly reduced at the beginning of the earthquakes, and to be converged to constant values shortly after the displacement approaches to the Predefined critical values. It is observed that the maximum relative distanced an maximum relative displacements are generally Increased as the relative density of a soil decreases As the peak ground acceleration increases, the response ratio of the case considering stiffness degradation to the case considering constant stiffness decreases.

  • PDF

The Design and Implementation of Arc Power supply for Neutral Beam Injection (중성입자빔 가열을 위한 아크 전원 공급장치 설계 및 구현)

  • Lee, Hee-Jun;Shin, Soo-Cheol;Lee, Seung-Gyo;Jung, Yong-Chae;Won, Chung-Yuen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.6
    • /
    • pp.50-58
    • /
    • 2013
  • The Neutral Beam Injection(NBI) generates ultra-high temperature energy in the tokamak of nuclear fusion. The NBI consists of filament power supply acceleration and deceleration power supply and arc power supply(APS). The APS has characteristics of low voltage and high current. APS generate arc through constant output of voltage and current. So this paper proposed suitable buck converter for low voltage and high current. The case of proposed buck converter used parallel switch because it can increase capacity and decrease conduction loss. When an arc is generated, the NBI chamber occur high voltage. And it will break output capacitor of buck converter. Therefore the output capacitor was removed in the proposed converter. Thus buck converter with constant output is the most important design of the output inductor. In this paper, designed APS verified operation of system and stability through simulation and prototype.

How airplanes fly at power-off and full-power on rectilinear trajectories

  • Labonte, Gilles
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.1
    • /
    • pp.53-78
    • /
    • 2020
  • Automatic trajectory planning is an important task that will have to be performed by truly autonomous vehicles. The main method proposed, for unmanned airplanes to do this, consists in concatenating elementary segments of trajectories such as rectilinear, circular and helical segments. It is argued here that because these cannot be expected to all be flyable at a same constant speed, it is necessary to consider segments on which the airplane accelerates or decelerates. In order to preserve the planning advantages that result from having the speed constant, it is proposed to do all speed changes at maximum deceleration or acceleration, so that they are as brief as possible. The constraints on the load factor, the lift and the power required for the motion are derived. The equation of motion for such accelerated motions is solved numerically. New results are obtained concerning the value of the angle and the speed for which the longest distance and the longest duration glides happen, and then for which the steepest, the fastest and the most fuel economical climbs happen. The values obtained differ from those found in most airplane dynamics textbooks. Example of tables are produced that show how general speed changes can be effected efficiently; showing the time required for the changes, the horizontal distance traveled and the amount of fuel required. The results obtained apply to all internal combustion engine-propeller driven airplanes.

Lifetime Prediction of Rubber Pad for High Speed Railway Vehicle (고속철도용 레일패드 노후화 정량화 방안 연구)

  • Woo, Chang-Su;Choe, Byeong-Ik;Park, Hyun-Sung;Yang, Shin-Chu;Jang, Sung-Yep;Kim, Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.8
    • /
    • pp.739-744
    • /
    • 2009
  • Rail-pad is an important and readily replaceable component of a railway track, as it is the elastic layer between the rail and the sleeper. Characteristics and useful lifetime prediction of rail-pad was very important in design procedure to assure the safety and reliability. In this paper, the degradation of rail pad properties as a function of their in-service life is studied with a view of developing a technique for predicting the optimum period of track maintenance with regard to pad replacement. In order to investigate the useful lifetime, the accelerate test were carried out. Accelerated test results changes as the threshold are used for assessment of the useful life and time to threshold value were plotted against reciprocal of absolute temperature to give the Arrhenius plot. By using the acceleration test, several useful lifetime prediction for rail-pads were proposed.

Development and Verification of Measuring Tester for Generated Axial Force at Constant Velocity Joints (등속조인트에서 발생하는 축력 측정장치 개발 및 검증)

  • Lee, Kwang-Hee;Lee, Deuk-Won;Lee, Chul-Hee;Yun, Hyuk-Chae;Cho, Won-Oh
    • Tribology and Lubricants
    • /
    • v.28 no.6
    • /
    • pp.328-332
    • /
    • 2012
  • Generated Axial Force (GAF) due to internal friction at Constant Velocity (CV) joints is one of the causes generating vibration problems such as shudder in vehicle. In this study, the GAF measuring tester is developed to precisely measure GAF caused by internal friction in CV joints. As the developed tester can control temperature at joint, driving torque, angle of rotation and joint angles, actual driving conditions such as sudden acceleration can be applied to the machine. GAFs are measured and compared by using different types of grease in tripod housing. Also GAFs are measured for both new and used CV joints to be compared and analyzed. The test result shows the repeatability and consistency of the tester in terms of the different test conditions. By using the developed CV joint tester, friction performance of the joint can be evaluated by proposing the best CV joints as well as greases generating the lowest GAF.