• 제목/요약/키워드: consistent geometrical stiffness matrix

검색결과 2건 처리시간 0.016초

An exact finite element for a beam on a two-parameter elastic foundation: a revisit

  • Gulkan, P.;Alemdar, B.N.
    • Structural Engineering and Mechanics
    • /
    • 제7권3호
    • /
    • pp.259-276
    • /
    • 1999
  • An analytical solution for the shape functions of a beam segment supported on a generalized two-parameter elastic foundation is derived. The solution is general, and is not restricted to a particular range of magnitudes of the foundation parameters. The exact shape functions can be utilized to derive exact analytic expressions for the coefficients of the element stiffness matrix, work equivalent nodal forces for arbitrary transverse loads and coefficients of the consistent mass and geometrical stiffness matrices. As illustration, each distinct coefficient of the element stiffness matrix is compared with its conventional counterpart for a beam segment supported by no foundation at all for the entire range of foundation parameters.

Dynamic Instability of Lattice-Dome Structures by Lyapunov Concept

  • Han, Sang-Eul;Hou, Xiao-Wu
    • Architectural research
    • /
    • 제10권1호
    • /
    • pp.25-32
    • /
    • 2008
  • Stability is a very important part which we must consider in structural design. In this paper, we take advantage of finite element method to study parametrical instability of lattice dome structures, which is subjected to harmonically pulsating load. We consider elastic stiffness and geometrical stiffness simultaneously during the calculation of stiffness matrix, and adopt consistent mass matrix to make the solution more correct. In order to obtain instability regions, we represent displacements and accelerations in dynamic equation by trigonometric series expansions, and then obtain Hill's infinite determinants. After first order approximation, we can get first and second order dynamic instability regions eventually. Finally, we take 24-bar star dome and 90-bar lamella dome as examples to investigate dynamic instability phenomena.