• Title/Summary/Keyword: conserved

Search Result 1,799, Processing Time 0.024 seconds

Crystal structures of human DJ-1 and Escherichia coli Hsp31 that share an evolutionarily conserved domain

  • Cha, Sun-Shin
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.33-33
    • /
    • 2003
  • Human DJ-1 and Escherichia coli Hsp31 belong to ThiJ/PfpI family whose members contain a conserved domain. DJ-1 is associated with autosomal recessive early-onset parkinsonism and Hsp31 is a molecular chaperone. Structural comparisons between DJ-1, Hsp31, and an archeal protease, a member of ThiJ/PfpI family, lead to the identification of the chaperons activity of DJ-1 and the proteolytic activity of Hsp31. Moreover, the comparisons provide insights into how the functional diversity is realized in proteins that share an evolutionarily conserved domain. On the basis of the chaperons activity, the possible role of DJ-1 in the pathogenesis of Parkinson's disease is discussed.

  • PDF

Structure-function analysis of PRDI DNA polymerase

  • Jung, Guhung
    • The Microorganisms and Industry
    • /
    • v.16 no.3
    • /
    • pp.6-14
    • /
    • 1990
  • PRDI DNA polymerase is the smallest member of the family B DNA polymerase (Jung et al., 1987). This DNA polyerase is specified by bacteriophage PRDI which infects a wide variety of gram-negative bacteria(Mindich and Bamford, 1988). Because PRDI is highly amenable to genetic and biochemical manipulation, it is a convenient model system with which to study structure-function relationships of DNA polymerase molecules. To determine the functional roles of the highly conserved regions of the family B DNA polymerases, we have initiated site-directed mutagenesis with PRD1 DNA polymerase, and our results show that mutations at the conserved regions within PRD1 DNA polymerase inactivate polymerase complementing activity and catalytic activity.

  • PDF

3'-terminal sequence of mucor racemosus 18S rRNA gene (Mucor racemosus 18S rRNA gene의 3'말단 염기해독)

  • 지근억;김진경
    • Korean Journal of Microbiology
    • /
    • v.29 no.5
    • /
    • pp.284-289
    • /
    • 1991
  • the nucleotide sequence of the 3' terminal 568 bases of the 18S rRNA gene from Mucor racemosus was determined. The 3' end of the structural gene was identified by comparison with the published sequence for the Saccharomyces cerevisiae gene. The M. racemosus gene was found to share 83.8% homology with that of S. cerevisiae and 71-81% homology with those of human, mouse, maize, Xenopus laevis and Tetrahymena thermophila. The known methylation sites in X. laevis and human were also highly conserved in M. racemosus and located within most conserved regions of 18S RNA gene throughout evolution.

  • PDF

Crystal structure and functional analysis of the surE protein identify a novel phosphatase family

  • Lee, Jae-Young;Kwak, Jae-Eun;Suh, Se-Won
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2001.06a
    • /
    • pp.19-19
    • /
    • 2001
  • The genome sequencing has revealed a large number of proteins of unknown or little characterized functions that have been well conserved during evolution. It remains a great challenge to decipher the molecular and physiological functions of these proteins. One example of the evolutionarily conserved protein family with little understood function is the surE family.(omitted)

  • PDF

Role of the Amino Acid Residues in the Catalysis of Catechol 2,3-dioxygenase from Pseudomonas putida SU10 as Probed by Chemical Modification and Random Mutagenesis

  • Park, Sun-Jung;Park, Jin-Mo;Lee, Byeong-Jae;Min, Kyung-Hee
    • Journal of Microbiology
    • /
    • v.35 no.4
    • /
    • pp.300-308
    • /
    • 1997
  • The catechol 2,3-dioxygenase (C23O) encoded by the Pseudomonas putida xylE gene was over-produced in Escherichia coli and purified to homogeneity. The activity of the C23O required the reduced form of the Fe(II) ion since the enzyme was highly susceptible to inactivation with hydrogen perocide but reactivated with the addition of ferrous sulfate in conjunction with ascorbic acid. The C23O activity was abolished by treatment with the chemical reagents, diethyl-pyrocarbonate (DEPC), tetranitromethane (TNM), and 1-cyclohexy1-3-(2-morpholinoethyl) car-bodiimidemetho-ρ-toluenesulfontate (CMC), which are modifying reagents of histidine, tyrosine and glutamic acid, respectively. These results suggest that histidine, tyrosine and glutamic acid residues may be good active sites for the enzyme activity. These amino acid residues are conserved residues may be good active sites for the enzyme activity. These amino acid residues are conserved residues among several extradion dioxygenases and have the chemical potential to serveas ligands for Fe(II) coordination. Analysis of random point mutants in the C23O gene derived by PCR technique revealed that the mutated positions of two mutants, T179S and S211R, were located near the conserved His165 amd Hos217 residues, respectively. This finding indicates that these two positions, along with the conserved histidine residues, are specially effective regions for the enzyme function.

  • PDF

Site-directed Mutagenesis of Five Conserved Residues of Subunit I of the Cytochrome cbb3 Oxidase in Rhodobacter capsulatus

  • Ozturk, Mehmet;Gurel, Ekrem;Watmough, Nicholas J.;Mandaci, Sevnur
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.697-707
    • /
    • 2007
  • Cytochrome $cbb_3$ oxidase is a member of the heme-copper oxidase superfamily that catalyses the reduction of molecular oxygen to the water and conserves the liberated energy in the form of a proton gradient. Comparison of the amino acid sequences of subunit I from different classes of heme-copper oxidases showed that transmembrane helix VIII and the loop between transmembrane helices IX and X contain five highly conserved polar residues; Ser333, Ser340, Thr350, Asn390 and Thr394. To determine the relationship between these conserved amino acids and the activity and assembly of the $cbb_3$ oxidase in Rhodobacter capsulatus, each of these five conserved amino acids was substituted for alanine by site-directed mutagenesis. The effects of these mutations on catalytic activity were determined using a NADI plate assay and by measurements of the rate of oxygen consumption. The consequence of these mutations for the structural integrity of the $cbb_3$ oxidase was determined by SDS-PAGE analysis of chromatophore membranes followed by TMBZ staining. The results indicate that the Asn390Ala mutation led to a complete loss of enzyme activity and that the Ser333Ala mutation decreased the activity significantly. The remaining mutants cause a partial loss of catalytic activity. All of the mutant enzymes, except Asn390Ala, were apparently correctly assembled and stable in the membrane of the R. capsulatus.

Accelerated Evolution of the Regulatory Sequences of Brain Development in the Human Genome

  • Lee, Kang Seon;Bang, Hyoeun;Choi, Jung Kyoon;Kim, Kwoneel
    • Molecules and Cells
    • /
    • v.43 no.4
    • /
    • pp.331-339
    • /
    • 2020
  • Genetic modifications in noncoding regulatory regions are likely critical to human evolution. Human-accelerated noncoding elements are highly conserved noncoding regions among vertebrates but have large differences across humans, which implies human-specific regulatory potential. In this study, we found that human-accelerated noncoding elements were frequently coupled with DNase I hypersensitive sites (DHSs), together with monomethylated and trimethylated histone H3 lysine 4, which are active regulatory markers. This coupling was particularly pronounced in fetal brains relative to adult brains, non-brain fetal tissues, and embryonic stem cells. However, fetal brain DHSs were also specifically enriched in deeply conserved sequences, implying coexistence of universal maintenance and human-specific fitness in human brain development. We assessed whether this coexisting pattern was a general one by quantitatively measuring evolutionary rates of DHSs. As a result, fetal brain DHSs showed a mixed but distinct signature of regional conservation and outlier point acceleration as compared to other DHSs. This finding suggests that brain developmental sequences are selectively constrained in general, whereas specific nucleotides are under positive selection or constraint relaxation simultaneously. Hence, we hypothesize that human- or primate-specific changes to universally conserved regulatory codes of brain development may drive the accelerated, and most likely adaptive, evolution of the regulatory network of the human brain.

A Novel Heterozygous Mutation (F252Y) in Exon 7 of the IRF6 Gene is Associated with Oral Squamous Cell Carcinomas

  • Melath, Anil;Santhakumar, Gopi Krishnan;Madhavannair, Shyam Sunder;Nedumgottil, Binoy Mathews;Ramanathan, Arvind
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6803-6806
    • /
    • 2013
  • Background: Interferon regulatory factor 6 (IRF6) is a transcription factor with distinct and conserved DNA and protein binding domains. Mutations within the protein binding domain have been significantly observed in subjects with orofacial cleft relative to healthy controls. In addition, recent studies have identified loss of expression of IRF6 due to promoter hypermethylation in cutaneous squamous cell carcinomas. Since mutational events occurring within the conserved domains are likely to affect the function of a protein, we investigated whether regions within the IRF6 gene that encodes for the conserved protein binding domain carried mutations in oral squamous cell carcinoma (OSCC). Materials and Methods: Total chromosomal DNA extracted from 32 post surgical OSCC tissue samples were amplified using intronic primers flanking the exon 7 of IRF6 gene, which encodes for the major region of protein binding domain. The PCR amplicons from all the samples were subsequently resolved in a 1.2% agarose gel, purified and subjected to direct sequencing to screen for mutations. Results: Sequencing analysis resulted in the identification of a mutation within exon 7 of IRF6 that occurred in heterozygous condition in 9% (3/32) of OSCC samples. The wild type codon TTC at position 252 coding for phenylalanine was found to be mutated to TAC that coded for tyrosine (F252Y). Conclusions: The present study identified for the first time a novel mutation within the conserved protein binding domain of IRF6 gene in tissue samples of subjects with OSCC.

Genetic diversity of conserved potato germplasm using microsatellite markers

  • Lee, Gi-An;Cho, Kwang-Soo;Shin, Myoung-Jae;Lee, Jung-Ro;Cho, Yang-Hee;Ma, Kyung-Ho
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.85-85
    • /
    • 2017
  • Potato is important carbohydrate source over the world in that revealing high productivity per the unit area, and their cultivation area is estimated to be increased to cope with a scarcity of food according to the population increase. Major cultivated species of potato is Solanum tuberosum (2n = 4x = 48) and regarded as being originated in Andes region of South America. The diverse potato genetic resources has been collected and perserved in Highland Agricultural Research Institute (NICS, RDA), and the genetic materials as DNA stock is conserved in National Agrobiodiversity Center(NAS, RDA). The understanding of genetic constitution of conserved diversity is the basis for the germplam management and further utilization. In this study, we analyzed the genetic diversity of potato germplasm(479 accessions) using 24 microsatellite markers which have been internationally used for fingerprinting of potato accession. The allele number and polymorphic information content (PIC) of total accessions per locus was ranged from 2 to 18 (mean = 8.2) and from 0.214 to 0.771 (mean = 0.595), respectively. Especially, the accession originated from Korea revealed average allele number of 6.0 (2 - 11) and average PIC value of 0.58 (0.193 - 0.763). Three groups were deduced by phylogenic analysis (Group-1, -2, -3); Korean accessions showed close genetic similarity to Japanese and USA accessions, and Korean landraces were mainly included in Group-3. We try to elaborate the genetic diversity analysis of conserved potato germplasm by acquiring more genotypes using applicable molecular markers.

  • PDF

Insilico profiling of microRNAs in Korean ginseng (Panax ginseng Meyer)

  • Mathiyalagan, Ramya;Subramaniyam, Sathiyamoorthy;Natarajan, Sathishkumar;Kim, Yeon Ju;Sun, Myung Suk;Kim, Se Young;Kim, Yu-Jin;Yang, Deok Chun
    • Journal of Ginseng Research
    • /
    • v.37 no.2
    • /
    • pp.227-247
    • /
    • 2013
  • MicroRNAs (miRNAs) are a class of recently discovered non-coding small RNA molecules, on average approximately 21 nucleotides in length, which underlie numerous important biological roles in gene regulation in various organisms. The miRNA database (release 18) has 18,226 miRNAs, which have been deposited from different species. Although miRNAs have been identified and validated in many plant species, no studies have been reported on discovering miRNAs in Panax ginseng Meyer, which is a traditionally known medicinal plant in oriental medicine, also known as Korean ginseng. It has triterpene ginseng saponins called ginsenosides, which are responsible for its various pharmacological activities. Predicting conserved miRNAs by homology-based analysis with available expressed sequence tag (EST) sequences can be powerful, if the species lacks whole genome sequence information. In this study by using the EST based computational approach, 69 conserved miRNAs belonging to 44 miRNA families were identified in Korean ginseng. The digital gene expression patterns of predicted conserved miRNAs were analyzed by deep sequencing using small RNA sequences of flower buds, leaves, and lateral roots. We have found that many of the identified miRNAs showed tissue specific expressions. Using the insilico method, 346 potential targets were identified for the predicted 69 conserved miRNAs by searching the ginseng EST database, and the predicted targets were mainly involved in secondary metabolic processes, responses to biotic and abiotic stress, and transcription regulator activities, as well as a variety of other metabolic processes.