• Title/Summary/Keyword: consequence-based engineering

Search Result 284, Processing Time 0.021 seconds

Consequence Analysis of flammable Materials at Risk Based Inspection using API-581 (API-581에 의한 위험기반 검사에서 가연성 물질의 사고결과 분석)

  • Lee Hern-Chang;Ryoo Jun;Kim Hwan-Joo;Jang Seo-Il;Kim Tae-Ok
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.60-68
    • /
    • 2004
  • Consequence analysis of flammable materials that affect to a risk of facilities was studied at the risk based inspection using API-581. We found that consequence areas (damage area of equipment and fatality area) by release accident of flammable materials showed high value for the case of liquid phase and auto-ignition likely, and that consequence areas of flammable gases decreased as temperature increased and the pipe diameter and pressure decreased at continuous release.

The Research on the Real-time Emergency Response Plan for the Company based on Consequence Analysis for Chemical Accidents (화학사고 발생 시 피해예측 모델과 연계된 사업장의 실시간 비상대응 체계에 관한 연구)

  • Jun Ho Ha;Chang Jun Lee
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.2
    • /
    • pp.28-37
    • /
    • 2024
  • The recent surge in the production and handling of hazardous materials in Korea necessitates developing and implementing robust emergency response plans. These plans are crucial in safeguarding the well-being of workers and residents in the event of an incident. The consequence analysis methodology outlined in the KOSHA guidelines provides a foundation for designing emergency response plans in the event of chemical accidents. However, the consequence analysis is evaluated based on assumed accident cases or worst-case scenarios. Consequently, the emergency response plan based on the consequence analysis may overestimate the damage area, complicating rescue efforts and unnecessarily increasing costs. More information and parameters become available after an accident, enabling more accurate consequence analysis. This implies that the results of consequence analysis based on this detailed information provide more realistic results than those based on assumed accidents. This study attempts to optimize the resource allocation and cost-effectiveness of emergency response plans for chemical accidents. Existing procedures and manuals are revised to elucidate the proposed model and conduct real-time consequence analysis. The existing emergency response plan is compared to verify the proposed model's efficacy. The obtained results indicate that the proposed model can exhibit better performance.

Development Direction of Fire Consequence Analysis Programs for Hazardous Materials (위험물 취급설비 화재 사고결과 영향평가 프로그램 개발 방향)

  • 유재환;김용수;이영순;이경봉;이성우;박달재
    • Fire Science and Engineering
    • /
    • v.13 no.4
    • /
    • pp.1-6
    • /
    • 1999
  • In this paper, We have analyzed the application characteristics of the three different consequence programs(SuperChems Pro., PHAST Pro., and SAFER Trace) for the models (pool fire, jet fire & flare, fireball, flash fire) based on the four possible accident scenarios. And we have proposed a development direction of fire consequence analysis models using the related theories and the results analysis of consequence programs.

  • PDF

General Framework for Risk-based Seismic Design (위험도 기반 내진 설계의 일반적인 프레임워크)

  • 장승필;오윤숙;김남희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.285-291
    • /
    • 2002
  • This paper proposes the concept and the general framework of the risk-based seismic design. Because earthquakes and the behaviors of structures are very unpredictable, probabilistic seismic design methods have been proposed after deterministic design methods. Considering these changes, we can find that the important point of seismic design is not the structural behavior itself, but the consequence of structural behavior under possible earthquakes. Risk-based seismic design can tell these consequences under any earthquakes. In this paper, structural confidences are considered by using fragility curve, and risk is modeled by failure probability and consequence-property damage cost, casualty cost.

  • PDF

Performance Based Design of Passive Fire Protection Using Consequence Analysis (사고 영향 분석을 이용한 성능위주의 내화설계)

  • Han, Dong-Hoon;Lee, Jong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.1
    • /
    • pp.102-107
    • /
    • 2004
  • Performance based design is a recent evolutionary step in the process of designing fire protection systems. In essence, it is a logical design process resulting in a solution that achieves a specified performance. Sometimes the prescriptive solutions presented in various codes and standards are too expensive or inflexible. Often the solutions do not and enables optimization of a solution for cost and function. In this study, performance based design was carried out to determine the extent of passive fire protection for oil terminal facilities. The results of performance based design were compared with those of prescriptive code based design. Performance based design is not always more economic than prescriptive code based design but provides more reliable and effective design that is fit for the purpose.

Fragility reduction using passive response modification in a Consequence-Based Engineering (CBE) framework

  • Duenas-Osorio, Leonardo;Park, Joonam;Towashiraporn, Peeranan;Goodno, Barry J.;Frost, David;Craig, James I.;Bostrom, Ann
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.527-537
    • /
    • 2004
  • Consequence-Based Engineering (CBE) is a new paradigm proposed by the Mid-America Earthquake Center (MAE) to guide evaluation and rehabilitation of building structures and networks in areas of low probability - high consequence earthquakes such as the central region of the U.S. The principal objective of CBE is to minimize consequences by prescribing appropriate intervention procedures for a broad range of structures and systems, in consultation with key decision makers. One possible intervention option for rehabilitating unreinforced masonry (URM) buildings, widely used for essential facilities in Mid-America, is passive energy dissipation (PED). After the CBE process is described, its application in the rehabilitation of vulnerable URM building construction in Mid-America is illustrated through the use of PED devices attached to flexible timber floor diaphragms. It is shown that PED's can be applied to URM buildings in situations where floor diaphragm flexibility can be controlled to reduce both out-of-plane and in-plane wall responses and damage. Reductions as high as 48% in roof displacement and acceleration can be achieved as demonstrated in studies reported below.

Consequence-based security for microreactors

  • Emile Gateau;Neil Todreas;Jacopo Buongiorno
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1108-1115
    • /
    • 2024
  • Assuring physical security for Micro Modular Reactors (MMRs) will be key to their licensing. Economic constraints however require changes in how the security objectives are achieved for MMRs. A promising new approach is the so-called performance based (PB) approach wherein the regulator formally sets general security objectives and leaves it to the licensee to set their own specific acceptance criteria to meet those objectives. To implement the PB approach for MMRs, one performs a consequence-based analysis (CBA) whose objective is to study hypothetical malicious attacks on the facility, assuming that intruders take control of the facility and perform any technically possible action within a limited time before an offsite security force can respond. The scenario leading to the most severe radiological consequences is selected and studied to estimate the limiting impact on public health. The CBA estimates the total amount of radionuclides that would be released to the atmosphere in this hypothetical scenario to determine the total radiation dose to which the public would be exposed. The predicted radiation exposure dose is then compared to the regulatory dose limit for the site. This paper describes application of the CBA to four different MMRs technologies.

Fragility-based rapid earthquake loss assessment of precast RC buildings in the Marmara region

  • Ali Yesilyurt;Oguzhan Cetindemir;Seyhan O. Akcan;Abdullah C. Zulfikar
    • Structural Engineering and Mechanics
    • /
    • v.88 no.1
    • /
    • pp.13-23
    • /
    • 2023
  • Seismic risk assessment studies are one of the most crucial instruments for mitigating casualties and economic losses. This work utilizes fragility curves to evaluate the seismic risk of single-story precast buildings, which are generally favored in Marmara's organized industrial zones. First, the precast building stock in the region has been categorized into nine sub-classes. Then, seven locations in the Marmara region with a high concentration of industrial activities are considered. Probabilistic seismic hazard assessments were conducted for both the soil-dependent and soil-independent scenarios. Subsequently, damage analysis was performed based on the structural capacity and mean fragility curves. Considering four different consequence models, 630 sub-class-specific loss curves for buildings were obtained. In the current study, it has been determined that the consequence model has a significant impact on the loss curves, hence, average loss curves were computed for each case investigated. In light of the acquired results, it was found that the loss ratio values obtained at different locations within the same region show significant variation. In addition, it was observed that the structural damage states change from serviceable to repairable or repairable to unrepairable. Within the scope of the study, 126 average loss functions were presented that could be easily used by non-experts in earthquake engineering, regardless of structural analysis. These functions, which offer loss ratios for varying hazard levels, are valuable outputs that allow preliminary risk assessment in the region and yield sensible outcomes for insurance activities.

Design of LDWS Based on Performance-Based Approach Considering Driver Behaviors (운전자 반응을 고려한 성능기반 기법 적용 차선이탈경보시스템 경보 시점 설계 연구)

  • Kim, Hyung Jun;Yang, Ji Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.11
    • /
    • pp.1081-1087
    • /
    • 2015
  • This article aims to provide a design method of warning thresholds for active safety systems based on the performance-based approach considering driver behaviors. Both positive and negative consequences of warnings are considered, and the main idea is to choose a warning threshold where the positive consequence is maximized, whereas the negative consequence is minimized. The process of the performance-based approach involves: Defining the operating scenarios; setting the trajectory models, including human characteristics; estimating the alert and nominal trajectories; estimating the performance metrics; generating a performance-metric plot; and determining the alert thresholds. This paper chose a lane-departure warning system as an example to show the usefulness of the performance-based approach. Both human and sensor characteristics were considered in the system design, and this paper provided a quantitative method to include human factors in designing active safety systems.

Optimization method for offsite consequence analysis by efficient plume segmentation

  • Seunghwan Kim;Sung-yeop Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3851-3863
    • /
    • 2024
  • The speed of offsite consequence analysis is highly important due to the extensive calculations required to handle all the scenarios for a single-unit or multi-unit Level 3 PSA (probabilistic safety assessment). To perform an offsite consequence analysis as part of Level 3 PSA, various input parameters are considered, amongst which certain parameters, such as plume segments, spatial grids, and particle size distributions, have flexible input formats. This study describes the development of an effective optimization method to reduce the analysis time as much as possible while maintaining the accuracy of the offsite consequence analysis results. The effect of plume segmentation on offsite consequence analysis was investigated by observing deviations in analysis results and changes in the required analysis times following changes in plume release. Then a plume segmentation optimization method based on the cumulative release fraction slope was developed to intensively analyze the sections with rapid release and to simplify the analysis for the sections with nonsignificant release. As a result of applying this method, the analysis time was reduced by about 54.5 % compared to the base case, while the resulting health effects showed very small deviations of 0.03 % and 1.77 % for early fatality risk and cancer fatality risk, respectively.