• Title/Summary/Keyword: connectors

Search Result 547, Processing Time 0.021 seconds

Seismic Performance of Beam-to-Column Joints with Wedge Connectors (쐐기형 강재 접합장치를 사용한 보-기둥 접합부의 내진성능)

  • Park, Jong Won;Kang, Seoung Min;Hwang, In Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.655-661
    • /
    • 2007
  • A new steel connection method using wedges known as Self-Locking Connector has been developed. In this study, experimental investigation was conducted to verify the seismic performance of steel beam-to-column joints with Self-Locking Connectors. Cyclic-loading tests were performed on two beam-to-column joints with Self-Locking Connectors. The two beam-to-column joint specimens were of the cantilever-type and had the same details. Test results showed that beam-to-column joints with Self-Locking Connectors were able to developa total rotation capacity of 0.06 radian, which is greater than the 0.04 radian required for Special Moment Frames. Moreover, their energy absorption capacity was much greater than that of conventional joints.

Static behaviour of bolted shear connectors with mechanical coupler embedded in concrete

  • Milosavljevic, Branko;Milicevic, Ivan;Pavlovic, Marko;Spremic, Milan
    • Steel and Composite Structures
    • /
    • v.29 no.2
    • /
    • pp.257-272
    • /
    • 2018
  • The research of shear connectors composed from mechanical couplers with rebar anchors, embedded in concrete, and steel bolts, as a mean of shear transfer in composite connections is presented in the paper. Specific issues related to this type of connections are local concrete pressure in the connector vicinity as well as the shear flow along the connector axis. The experimental research included 18 specimens, arranged in 5 series. Nonlinear numerical analyses using Abaqus software was conducted on corresponding FE models. Different failure modes were analysed, with emphasis on concrete edge failure and bolt shear failure. The influence of key parameters on the behaviour of shear connector was examined: (1) concrete compression strength, (2) bolt tensile strength and diameter and (3) concrete edge distance. It is concluded that bolted shear connectors with mechanical couplers have sufficient capacity to be used as shear connectors in composite structures and that their behaviour is similar to the behaviour of post installed anchors as well as other types of connectors anchored without the head.

Composite Wood-Concrete Structural Floor System with Horizontal Connectors

  • SaRibeiro, Ruy A.;SaRibeiro, Marilene G.
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.1
    • /
    • pp.61-67
    • /
    • 2015
  • The concept of horizontal shear connection utilization on wood-concrete beams intends to be an alternative connection detail for composite wood-concrete decks. The volume of sawn-wood is over three times more expensive than concrete, in Brazil. In order to be competitive in the Brazilian market we need a composite deck with the least amount of wood and a simple and inexpensive connection detail. This research project uses medium to high density tropical hardwoods managed from the Brazilian Amazon region and construction steel rods. The beams studied are composed of a bottom layer of staggered wood boards and a top layer of concrete. The wood members are laterally nailed together to form a wide beam, and horizontal rebar connectors are installed before the concrete layer is applied on top. Two sets of wood-concrete layered beams with horizontal rebar connectors (6 and 8) were tested in third-point loading flexural bending. The initial results reveal medium composite efficiency for the beams tested. An improvement on the previously conceived connection detail (set with six connectors) for the composite wood-concrete structural floor system was achieved by the set with eight connectors. The new layout of the horizontal rebar connectors added higher composite efficiency for the beams tested. Further analysis with advanced rigorous numerical Finite Element Modeling is suggested to optimize the connection parameters. Composite wood-concrete decks can attend a large demand for pedestrian bridges, as well as residential and commercial slabs in the Brazilian Amazon.

A Study on the Java Beans Component Integration in the Distributed System Environment (분산 시스템 환경에서 Java Beans 컴포넌트 통합에 관한 연구)

  • 정성옥
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.291-294
    • /
    • 2001
  • This Current research for software architecture views and models a software system as a set of components and connectors. Components are ions of system level computational entities, connectors are ions of component interrelationships. In his paper, we focus attention on connectors for the Java Beans-based systems that are built using object integration technologies like CORBA. We present connector model in lava Beans-based system for object-oriented component integration. We start with a discussion of related work of software architecture research and of Object-Oriented modeling that focuses on the description of component collaborations. We propose connectors as transferable ions of system level component interconnection and inter-operation. Connectors are architectural ions of component coordination in the architecture of a system only. Connectors describe a collaboration rationale for component adaptations, which are then modeled in the concrete architecture of a system.

  • PDF

Static behaviour of multi-row stud shear connectors in high- strength concrete

  • Su, Qingtian;Yang, Guotao;Bradford, Mark A.
    • Steel and Composite Structures
    • /
    • v.17 no.6
    • /
    • pp.967-980
    • /
    • 2014
  • In regions of high shear forces in composite bridges, headed stud shear connectors need to be arranged with a small spacing in order to satisfy the design requirement of resisting the high interface shear force present at this location. Despite this, studies related to groups of headed studs are somewhat rare. This paper presents an investigation of the static behaviour of grouped stud shear connectors in high-strength concrete. Descriptions are given of five push-out test specimens with different arrangements of the studs that were fabricated and tested, and the failure modes, load-slip response, ultimate load capacities and related slip values that were obtained are reported. It is found that the load-slip equation given by some researchers based on a single stud shear connector in normal strength concrete do not apply to grouped stud shear connectors in high-strength concrete, and an algebraic load-slip expression is proposed based on the test results. Comparisons between the test results and the formulae provided by some national codes show that the equations for the ultimate capacity provided in these codes are conservative when used for connectors in high-strength concrete. A reduction coefficient is proposed to take into account the effect of the studs being in a group.

Seismic Performance of Composite Beam-to-Column Joints Using Wedges (쐐기의 원리를 이용한 합성 보-기둥 접합부의 내진성능에 관한 연구)

  • Park, Jong-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.6
    • /
    • pp.63-68
    • /
    • 2007
  • The purpose of this study was to develop a new connection method between steel beams and PC columns known as SL connectors. Composite moment frames consisting of PC columns (or composite columns) and steel beams make the best use of advantages of both concrete and steel materials. However, the connection between two members of different materials can be complex and/or increase the fabrication costs significantly. The concept of SL connectors is based on using wedges and the emphasis is on a self-locking (SL) feature. SL connectors are easy to install and provide better seismic performance compared to conventional connections. To evaluate the seismic performance of the steel beam-to-PC column joints with SL connectors, cyclic load tests were conducted. Test result showed that steel beam-to-concrete column joint with SL connectors was able to provide sufficient performance for use in seismic resistant moment frames.

Experimental study on steel-concrete composite beams with Uplift-restricted and slip-permitted screw-type (URSP-S) connectors

  • Duan, Linli;Chen, Hongbing;Nie, Xin;Han, Sanwei
    • Steel and Composite Structures
    • /
    • v.35 no.2
    • /
    • pp.261-278
    • /
    • 2020
  • In steel-concrete composite beams, to improve the cracking resistance of the concrete slab in the hogging moment region, a new type of connector in the interface, named uplift-restricted and slip-permitted screw-type (URSP-S) connector has been proposed. This paper focuses on the behavior of steel-concrete composite beams with URSP-S connectors. A total of three beam specimens including a simply supported beam with URSP-S connectors and two continuous composite beams with different connectors arrangements were designed and tested. More specifically, one continuous composite beam was equipped with URSP-S connectors in negative moment region and traditional shear studs in other regions. For comparison, the other one was designed with only traditional shear studs. The failure modes, crack evolution process, ultimate capacities, strain responses at different locations as well as the interface slip of the three tested specimens were measured and evaluated in-depth. Based on the experimental study, the research findings indicate that the larger slip deformation is allowed while using URSP-S connectors. Meanwhile, the tensile stress reduces and the cracking resistance of the concrete slab improves accordingly. In addition, the overall stiffness and strength of the composite beam become slightly lower than those of the composite beam using traditional shear studs. Moreover, the arrangement suggestion of URSP-S connectors in the composite beam is discussed in this paper for its practical design and application.

Injection Molding Analysis for Narrow-Pitched FPC Connectors (협 피치 FPC 커넥터의 사출 성형 해석)

  • Yoon, Seon-Jin;Heo, Young-Moo;Han, Mu-kun;Jung, Min-young;Kang, Woo-Seung
    • Design & Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.1-6
    • /
    • 2014
  • The narrow-pitched connectors are of interest for small-scale devices such as smart phones because of theirs caling. We conducted an injection molding analysis and a warp analysis for 0.3mm and 0.5mm pitch FPC connectors. We obtained a volumetric shrinkage of 4.344%, a clamping force of 0.2529 tonne, a maximum injection pressure of 76.3 MPa as optimized molding conditions for the 0.3mm pitch FPC connector. We found that, compared with the traditional injection molding technique, the injection molding for narrow-pitched connectors comes with distinct features like low clamping force, high injection molding pressure, and narrow gate size. Adding to the optimization analysis, the deflection of 0.5mm pitch FPC connector was analyzed as well. A maximum deflection of 0.053mm was calculated, which the actual deflection of 0.062mm was compared to. The results deduced a relative error of 17%. We conclude that the deflection analysis along with the optimization analysis can be used as an effective tool to predict the behavior of narrow-pitch connectors although the relative error may need to improve.

  • PDF

Interface Study of the Intermediate Connectors in Tandem Organic Devices

  • Tang, Jian-Xin;Fung, Man-Keung;Lee, Chun-Sing;Lee, Shuit-Tong
    • Journal of Information Display
    • /
    • v.11 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • The intermediate connectors play crucial roles in the performance of tandem organic light-emitting diodes (OLEDs) because they are required to facilitate charge carrier transport and to guarantee transparency for light transmission and deposition compatibility. Understanding the physical properties of the intermediate connector is not only fundamentally important but is also crucial to developing high-efficiency organic devices with a tandem structure. In this study, several effective intermediate connectors in tandem OLEDs using a doped or non-doped organic p-n heterojunction were systematically investigated by studying their interfacial electronic structures and corresponding device characteristics. The working mechanisms of the intermediate connectors are discussed herein by referring to their relevant energy levels with respect to those of the neighboring organic layers. The factors affecting the operation of the intermediate connectors in tandem OLEDs, as demonstrated herein, provide guidance for the identification of new materials and device architectures for high-performance devices.

3D FE modeling considering shear connectors representation and number in CBGB

  • Abbu, Muthanna A.;Ekmekyapar, Talha A.;Ozakca, Mustafa A.
    • Steel and Composite Structures
    • /
    • v.17 no.3
    • /
    • pp.237-252
    • /
    • 2014
  • The use of composite structures is increasingly present in civil building works. Composite Box Girder Bridges (CBGB), particularly, are study of effect of shear connector's numbers and distribution on the behavior of CBGBs is submitted. A Predicti structures consisting of two materials, both connected by metal devices known as shear connectors. The main functions of these connectors are to allow for the joint behavior of the girder-deck, to restrict longitudinal slipping and uplifting at the element's interface and to take shear forces. This paper presents 3D numerical models of CBGBs to simulate their actual structural behavior, with emphasis on the girder-deck interface. Additionally, a Prediction of several FE models is assessed against the results acquired from a field test. A number of factors are considered, and confirmed through experiments, especially full shear connections, which are obviously essential in composite box girder. A good representation for shear connectors by suitable element type is considered. Numerical predictions of vertical displacements at critical sections fit fairly well with those evaluated experimentally. The agreement between the FE models and the experimental models show that the FE model can aid engineers in design practices of box girder bridges. Preliminary results indicate that number of shear studs can be significantly reduced to facilitate adoption of a new arrangement in modeling CBGBs with full composition. However, a further feasibility study to investigate the practical and economic aspects of such a remedy is recommended, and it may represent partial composition in such modeling.