• Title/Summary/Keyword: connected component based noise filtering

Search Result 5, Processing Time 0.026 seconds

Recognition of Korean Connected Digit Telephone Speech Using the Training Data Based Temporal Filter (훈련데이터 기반의 temporal filter를 적용한 4연숫자 전화음성 인식)

  • Jung, Sung-Yun;Bae, Keun-Sung
    • MALSORI
    • /
    • no.53
    • /
    • pp.93-102
    • /
    • 2005
  • The performance of a speech recognition system is generally degraded in telephone environment because of distortions caused by background noise and various channel characteristics. In this paper, data-driven temporal filters are investigated to improve the performance of a specific recognition task such as telephone speech. Three different temporal filtering methods are presented with recognition results for Korean connected-digit telephone speech. Filter coefficients are derived from the cepstral domain feature vectors using the principal component analysis. According to experimental results, the proposed temporal filtering method has shown slightly better performance than the previous ones.

  • PDF

Telephone Speech Recognition with Data-Driven Selective Temporal Filtering based on Principal Component Analysis

  • Jung Sun Gyun;Son Jong Mok;Bae Keun Sung
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.764-767
    • /
    • 2004
  • The performance of a speech recognition system is generally degraded in telephone environment because of distortions caused by background noise and various channel characteristics. In this paper, data-driven temporal filters are investigated to improve the performance of a specific recognition task such as telephone speech. Three different temporal filtering methods are presented with recognition results for Korean connected-digit telephone speech. Filter coefficients are derived from the cepstral domain feature vectors using the principal component analysis.

  • PDF

A study on image region analysis and image enhancement using detail descriptor (디테일 디스크립터를 이용한 이미지 영역 분석과 개선에 관한 연구)

  • Lim, Jae Sung;Jeong, Young-Tak;Lee, Ji-Hyeok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.728-735
    • /
    • 2017
  • With the proliferation of digital devices, the devices have generated considerable additive white Gaussian noise while acquiring digital images. The most well-known denoising methods focused on eliminating the noise, so detailed components that include image information were removed proportionally while eliminating the image noise. The proposed algorithm provides a method that preserves the details and effectively removes the noise. In this proposed method, the goal is to separate meaningful detail information in image noise environment using the edge strength and edge connectivity. Consequently, even as the noise level increases, it shows denoising results better than the other benchmark methods because proposed method extracts the connected detail component information. In addition, the proposed method effectively eliminated the noise for various noise levels; compared to the benchmark algorithms, the proposed algorithm shows a highly structural similarity index(SSIM) value and peak signal-to-noise ratio(PSNR) value, respectively. As shown the result of high SSIMs, it was confirmed that the SSIMs of the denoising results includes a human visual system(HVS).

Facial Regions Detection Using the Color and Shape Information in Color Still Images (컬러 정지 영상에서 색상과 모양 정보를 이용한 얼굴 영역 검출)

  • 김영길;한재혁;안재형
    • Journal of Korea Multimedia Society
    • /
    • v.4 no.1
    • /
    • pp.67-74
    • /
    • 2001
  • In this paper, we propose a face detection algorithm using the color and shape information in color still images. The proposed algorithm is only applied to chrominance components(Cb and Cr) in order to reduce the variations of lighting condition in YCbCr color space. Input image is segmented by pixels with skin-tone color and then the segmented mage follows the morphological filtering an geometric correction to eliminate noise and simplify the segmented regions in facial candidate regions. Multiple facial regions in input images can be isolated by connected component labeling. Moreover tilting facial regions can be detected by extraction of second moment-based ellipse features.

  • PDF

A CPU-GPU Hybrid System of Environment Perception and 3D Terrain Reconstruction for Unmanned Ground Vehicle

  • Song, Wei;Zou, Shuanghui;Tian, Yifei;Sun, Su;Fong, Simon;Cho, Kyungeun;Qiu, Lvyang
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1445-1456
    • /
    • 2018
  • Environment perception and three-dimensional (3D) reconstruction tasks are used to provide unmanned ground vehicle (UGV) with driving awareness interfaces. The speed of obstacle segmentation and surrounding terrain reconstruction crucially influences decision making in UGVs. To increase the processing speed of environment information analysis, we develop a CPU-GPU hybrid system of automatic environment perception and 3D terrain reconstruction based on the integration of multiple sensors. The system consists of three functional modules, namely, multi-sensor data collection and pre-processing, environment perception, and 3D reconstruction. To integrate individual datasets collected from different sensors, the pre-processing function registers the sensed LiDAR (light detection and ranging) point clouds, video sequences, and motion information into a global terrain model after filtering redundant and noise data according to the redundancy removal principle. In the environment perception module, the registered discrete points are clustered into ground surface and individual objects by using a ground segmentation method and a connected component labeling algorithm. The estimated ground surface and non-ground objects indicate the terrain to be traversed and obstacles in the environment, thus creating driving awareness. The 3D reconstruction module calibrates the projection matrix between the mounted LiDAR and cameras to map the local point clouds onto the captured video images. Texture meshes and color particle models are used to reconstruct the ground surface and objects of the 3D terrain model, respectively. To accelerate the proposed system, we apply the GPU parallel computation method to implement the applied computer graphics and image processing algorithms in parallel.