• Title/Summary/Keyword: conformational changes

Search Result 186, Processing Time 0.02 seconds

Effects of Temperature and Additives on the Thermal Stability of Glucoamylase from Aspergillus niger

  • Liu, Yang;Meng, Zhaoli;Shi, Ruilin;Zhan, Le;Hu, Wei;Xiang, Hongyu;Xie, Qiuhong
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.1
    • /
    • pp.33-43
    • /
    • 2015
  • GAM-1 and GAM-2, two themostable glucoamylases from Aspergillus niger B-30, possess different molecular masses, glycosylation, and thermal stability. In the present study, the effects of additives on the thermal inactivation of GAM-1 and GAM-2 were investigated. The half-lives of GAM-1 and GAM-2 at 70℃ were 45 and 216 min, respectively. Data obtained from fluorescence spectroscopy, circular dichroism spectroscopy, UV absorption spectroscopy, and dynamic light scattering demonstrated that during the thermal inactivation progress, combined with the loss of the helical structure and a majority of the tertiary structure, tryptophan residues were partially exposed and further led to glucoamylases aggregating. The thermal stability of GAM-1 and GAM-2 was largely improved in the presence of sorbitol and trehalose. Results from spectroscopy and Native-PAGE confirmed that sorbitol and trehalose maintained the native state of glucoamylases and prevented their thermal aggregation. The loss of hydrophobic bonding and helical structure was responsible for the decrease of glucoamylase activity. Additionally, sorbitol and trehalose significantly increased the substrate affinity and catalytic efficiency of the two glucoamylases. Our results display an insight into the thermal inactivation of glucoamylases and provide an important base for industrial applications of the thermally stable glucoamylases.

Physics on cancer and its curing

  • Oh, Hung-Kuk
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.11a
    • /
    • pp.91-97
    • /
    • 2000
  • The conventional model did not take momentum conservation into consideration when the electron absorbs and emits the photons. II-ray provides momentum conservations on any directions of the entering photons, and also the electrons have radial momentum conservations and fully elastic bouncing between two atoms, in the new atom model. Conventional atom model must be criticized on the following four points. (1) Natural motions between positive and negative entities are not circular motions but linear going and returning ones, for examples sexual motion, tidal motion, day and night etc. Because the radius of hydrogen atom's electron orbit is the order of 10$^{-11}$ m and the radia of the nucleons in the nucleus are the order of 10$^{-l4}$m and then the converging n-gamma rays to the nucleus have so great circular momentum, the electron can not have a circular motion. We can say without doubt that any elementary mass particle can have only linear motion because of the n-rays' hindrances, near the nucleus. (2) Potential energy generation was neglected when electron changes its orbit from outer one to inner one. The h v is the kinetic energy of the photo-electron. The total energy difference between orbits comprises kinetic and potential energies. (3) The structure of the space must be taken into consideration because the properties of the electron do not change during the transition from outer orbit to inner one even though it produces photon. (4) Total energy conservation law applies to the energy flow between mind and matter because we daily experiences a interconnection between mind and body. An understanding of the mechanisms responsible for the control of normal proliferation and differentiation of the various cell types which make up the human body will undoubtedly allow a greater insight into the abnormal growth of cells, A large body of biochemical evidence was eventually used to generate a receptor model with an external ligand binding domain linked through a single trans-membrane domain to the cytoplasmic tyrosine kinase and autophosphory-lation domains. The ligand induced conformational change in the external domain generates either a push-pull or rotational signal which is transduced from the outside to the inside of cell.l.ell.

  • PDF

A Protein Tyrosine Phosphatase Inhibitor, Pervanadate, Inhibits Angiotensin II-Induced β-Arrestin Cleavage

  • Jang, Sei-Heon;Hwang, Si Ae;Kim, Mijin;Yun, Sung-Hae;Kim, Moon-Sook;Karnik, Sadashiva S.;Lee, ChangWoo
    • Molecules and Cells
    • /
    • v.28 no.1
    • /
    • pp.25-30
    • /
    • 2009
  • ${\beta}$-Arrestins turn off G protein-mediated signals and initiate distinct G protein-independent signaling pathways. We previously demonstrated that angiotensin $AT_1$ receptorbound ${\beta}$-arrestin 1 is cleaved after $Phe^{388}$ upon angiotensin II stimulation. The mechanism and signaling pathway of angiotensin II-induced ${\beta}$-arrestin cleavage remain largely unknown. Here, we show that protein Tyr phosphatase activity is involved in the regulation of ${\beta}$-arrestin 1 cleavage. Tagging of green fluorescent protein (GFP) either to the N-terminus or C-terminus of ${\beta}$-arrestin 1 induced conformational changes and the cleavage of ${\beta}$-arrestin 1 without angiotensin $AT_1$ receptor activation. Orthovanadate and molybdate, inhibitors of protein Tyr phosphatase, attenuated the cleavage of C-terminal GFP-tagged ${\beta}$-arrestin 1 in vitro. The inhibitory effects of okadaic acid and pyrophosphate, which are inhibitors of protein Ser/Thr phosphatase, were less than those of protein Tyr phosphatase inhibitors. Cell-permeable pervanadate inhibited angiotensin II-induced cleavage of ${\beta}$-arrestin 1 in COS-1 cells. Our findings suggest that Tyr phosphorylation signaling is involved in the regulation of angiotensin II-induced ${\beta}$-arrestin cleavage.

Effect of Whey Protein Isolate on Ice Recrystallization Characteristics in Whey Protein Isolate/κ-Carrageenan Matrix

  • Chun, Ji-Yeon;Kim, Ji-Min;Min, Sang-Gi
    • Food Science of Animal Resources
    • /
    • v.32 no.5
    • /
    • pp.627-634
    • /
    • 2012
  • This study was carried out to investigate the physical and thermal properties of ${\kappa}$-carrageenan (${\kappa}$-car) gel added whey protein isolate (WPI) as a cryoprotectant. The concentration of ${\kappa}$-carrageenan was fixed at 0.2 wt%. The mean ice crystal size of the WPI/${\kappa}$-car was decreased according to increasing whey protein isolate concentration. The temperature of gel-sol (Tg-s) and sol-gel (Ts-g) transition of WPI/${\kappa}$-car maxtrix was represented in the order of 3.0, 0.2, 5.0 and 1.0 wt%. In addition, the transition temperature of gel-sol of WPI in sucrose solution were showed in order of 1.0, 5.0, 0.2 and 3.0 wt% depending on whey protein isolate concentration. The shape of ice crystal was divided largely into two types, round and rectangular form. 1.0 wt% WPI/${\kappa}$-car matrix at pH 7 and 9 showed minute and rectangular formation of ice crystals and whey protein isolate in sucrose solution at a concentration of 1.0 wt% WPI/${\kappa}$-car matrix at pH 3 and 5 showed relatively large size and round ice crystals. The ice recrystallization characteristics and cryprotective effect of ${\kappa}$-carrageenan changed through the addition of different concentrations of whey protein isolate. It seems that the conformational changes induced interactions between whey protein isolate and ${\kappa}$-carrageenan affected ice recrystallization.

Conformational Analysis of Cyclodextrins and Their Methylated Analogs (시클로 덱스티린과 그 메틸유도체의 구조분석)

  • Hee-Sook Choi
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.2
    • /
    • pp.324-328
    • /
    • 1992
  • The $^1H$ NMR chemical shifts and coupling constants for ${\alpha}$-, permethyl-${\alpha}$-, ${\beta}$-and permethyl-${\beta}$-cyclodextrins in neutral aqueous media were assigned based on the 470MHz spectra. In order to obtain accurate chemical shifts and coupling constants the experimental spectra were analyzed with the Raccoon spin simulation program. The rotamer distribution around the$C_{5-}C_6$ bond of the cyclodextrins evaluated from the coupling constants of $J_{56a}$ and $J_{56b}$. In our calculation of the ${\alpha}$-, and ${\beta}$-cycliodextrin showed that gg conformers were most favorable form and tg conformers were least favorable form. It is very interesting to note the changes in $J_{56a}$, $J_{56b}$ coupling constants of permethylated ${\alpha}$- and ${\beta}$-cyclodextrins from unmodified one. The gg conformers were more increased than unmodified one and instead of tg conformers gt conformers were least favorable one upon methylation.

  • PDF

Acceptor Specificity of Amylosucrase from Deinococcus radiopugnans and Its Application for Synthesis of Rutin Derivatives

  • Kim, Myo-Deok;Jung, Dong-Hyun;Seo, Dong-Ho;Jung, Jong-Hyun;Seo, Ean-Jeong;Baek, Nam-In;Yoo, Sang-Ho;Park, Cheon-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.11
    • /
    • pp.1845-1854
    • /
    • 2016
  • The transglycosylation activity of amylosucrase (ASase) has received significant attention owing to its use of an inexpensive donor, sucrose, and broad acceptor specificity, including glycone and aglycone compounds. The transglycosylation reaction of recombinant ASase from Deinococcus radiopugnans (DRpAS) was investigated using various phenolic compounds, and quercetin-3-O-rutinoside (rutin) was found to be the most suitable acceptor molecule used by DRpAS. Two amino acid residues in DRpAS variants (DRpAS Q299K and DRpAS Q299R), assumed to be involved in acceptor binding, were constructed by site-directed mutagenesis. Intriguingly, DRpAS Q299K and DRpAS Q299R produced 10-fold and 4-fold higher levels of rutin transglycosylation product than did the wild-type (WT) DRpAS, respectively. According to in silico molecular docking analysis, the lysine residue at position 299 in the mutants enables rutin to more easily position inside the active pocket of the mutant enzyme than in that of the WT, due to conformational changes in loop 4.

Acid and Chemical Induced Conformational Changes of Ervatamin B. Presence of Partially Structured Multiple Intermediates

  • Sundd, Monica;Kundu, Suman;Jagannadham, Medicherla V.
    • BMB Reports
    • /
    • v.35 no.2
    • /
    • pp.143-154
    • /
    • 2002
  • The structural and functional aspects of ervatamin B were studied in solution. Ervatamin B belongs to the $\alpha+\beta$ class of proteins. The intrinsic fluorescence emission maximum of the enzyme was at 350 nm under neutral conditions, and at 355 nm under denaturing conditions. Between pH 1.0-2.5 the enzyme exists in a partially unfolded state with minimum or no tertiary structure, and no proteolytic activity. At still lower pH, the enzyme regains substantial secondary structure, which is predominantly $\beta$-sheet conformation and shows a strong binding to 8-anilino-1-napthalene-sulfonic acid (ANS). In the presence of salt, the enzyme attains a similar state directly from the native state. Under neutral conditions, the enzyme was stable in urea, while the guanidine hydrochloride (GuHCl) induced equilibrium unfolding was cooperative. The GuHCl induced unfolding transition curves at pH 3.0 and 4.0 were non-coincidental, indicating the presence of intermediates in the unfolding pathway. This was substantiated by strong ANS binding that was observed at low concentrations of GuHCl at both pH 3.0 and 4.0. The urea induced transition curves at pH 3.0 were, however, coincidental, but non-cooperative. This indicates that the different structural units of the enzyme unfold in steps through intermediates. This observation is further supported by two emission maxima in ANS binding assay during urea denaturation. Hence, denaturant induced equilibrium unfolding pathway of ervatamin B, which differs from the acid induced unfolding pathway, is not a simple two-state transition but involves intermediates which probably accumulate at different stages of protein folding and hence adds a new dimension to the unfolding pathway of plant proteases of the papain superfamily.

Direct Electrochemistry and Electrocatalysis of Myoglobin with CoMoO4 Nanorods Modified Carbon Ionic Liquid Electrode

  • Zhao, Zengying;Cao, Lili;Hu, Anhui;Zhang, Weili;Ju, Xiaomei;Zhang, Yuanyuan;Sun, Wei
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.475-481
    • /
    • 2013
  • By using ionic liquid 1-hexylpyridinium hexafluorophosphate ($HPPF_6$) based carbon ionic liquid electrode (CILE) as the substrate electrode, a $CoMoO_4$ nanorods and myoglobin (Mb) composite was casted on the surface of CILE with chitosan (CTS) as the film forming material to obtain the modified electrode (CTS/$CoMoO_4$-Mb/CILE). Spectroscopic results indicated that Mb retained its native structures without any conformational changes after mixed with $CoMoO_4$ nanorods and CTS. Electrochemical behaviors of Mb on the electrode were carefully investigated by cyclic voltammetry with a pair of well-defined redox peaks from the heme Fe(III)/Fe(II) redox center of Mb appeared, which indicated that direct electron transfer between Mb and CILE was realized. Electrochemical parameters such as the electron transfer number (n), charge transfer coefficient (${\alpha}$) and electron transfer rate constant ($k_s$) were estimated by cyclic voltammetry with the results as 1.09, 0.53 and 1.16 $s^{-1}$, respectively. The Mb modified electrode showed good electrocatalytic ability toward the reduction of trichloroacetic acid in the concentration range from 0.1 to 32.0 mmol $L^{-1}$ with the detection limit as 0.036 mmol $L^{-1}$ ($3{\sigma}$), and the reduction of $H_2O_2$ in the concentration range from 0.12 to 397.0 ${\mu}mol\;L^{-1}$ with the detection limit as 0.0426 ${\mu}mol\;L^{-1}$ ($3{\sigma}$).

Comparative and Structural Analysis of the Interaction between β-Lactoglobulin type A and B with a New Anticancer Component (2,2'-Bipyridin n-Hexyl Dithiocarbamato Pd(II) Nitrate)

  • Divsalar, A.;Saboury, A.A.;Mansoori-Torshizi, H.;Hemmatinejad, B.
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.11
    • /
    • pp.1801-1808
    • /
    • 2006
  • The interaction between whey carrier protein $\beta$-lactoglobulin type A and B (BLG-A and -B) and 2,2'-bipyridin n-hexyl dithiocarbamato Pd(II) nitrate (BPHDC-Pd(II)), a new heavy metal complex designed for anticancer property, was investigated by fluorescence spectroscopy combined with chemometry and circular dichroism (CD) techniques. A strong fluorescence quenching reaction of BPHDC-Pd(II) to BLG-A and -B was observed. Hence, BPHDC-Pd(II) complex can be bound to both BLG-A and -B, and quench the fluorescence spectra of the proteins. The quenching constant was determined using the modified Stern-Volmer equation. The binding parameters were evaluated by fluorescence quenching method. The results of binding study provided evidences presence of two and three sets of binding sites on the BLG-B and -A, respectively, for BPHDC-Pd(II) complex. Using fluorescence spectroscopy and chemometry, the ability of BLG-A and -B to form an intermediate upon interaction with BPHDC-Pd(II) complex was assessed. CD studies displayed that under influence of different concentrations of BPHDC-Pd(II) complex, the regular secondary structure of BLG-B had no significant changes, whereas for BLG-A a transition from $\alpha$-helix to $\beta$-structure was appeared. The results for both of BLG-A and -B displayed that BPHDC-Pd(II) complex can induce a conformational transition from the native form to an intermediate state with a slightly opened conformation, which is detectable with chemometry analyses.

Effect of Acetylation on Conformation of Glycinin (아세틸화가 Glycinin의 구조에 미치는 영향)

  • Kim, Kang-Sung;Rhee, Joon-Shick
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.714-720
    • /
    • 1989
  • Effects of acetylation on conformational changes of glycinin was studied using solvent perturbation, second derivative spectroscopy, near uv circular dichroism spectra and viscosity. Glycinin with purity of more than 93% was used for the experiment. Modification was carried out with acetic anhydride and glycinin with lysine residue modification of 0%, 28%, 65%, 85%, and 95% were used for the experiment. The result of solvent perturbation using some selected perturbants, such as glycerol, ethylene glycol, and dimethyl sulfoxide revealed that acetylation has caused increase In solvent accessibility of tyrosine residues from less than 40% in native protein to more than 70% for 95% acetylated glycinin. This was confirmed by second derivative spectroscopy. Near ultraviolet circular dichroism revealed that the spectra of native and acetylated glycinin were almost identical differing only in intensity and no other useful information could be derived from it. However, in the case of 95% acetylated glycinin the influence of tryptophan on the spectrum was more pronounced Specific viscosity of glycinin also increased by modification, the extent of which depended upon the degree of acetylation. These results supported that acetylation had caused globular conformation of glycinin to be expanded and denatured.

  • PDF