• 제목/요약/키워드: confinement length

검색결과 118건 처리시간 0.023초

지오그리드 보강 스톤컬럼 공법의 하중 지지 특성 (Load-carrying capacity of geosynthetic encased stone columns)

  • 유충식;김선빈;이대영;박선준
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.396-404
    • /
    • 2009
  • This paper presents the results of numerical investigation on support mechanism of geogrid-encased stone columns for use in soft ground. A number of cases were analyzed using a axial- and 3D stress-pore pressure coupled model that can effectively model construction sequence and drainage as well as reinforcing effects of geogrid-encased stone columns. The results indicated that the geogrid encasement tends to significantly improve the load carrying of a stone column. Also revealed was that such a confinement effect depends on encasement length and stiffness of geogrid. It is also shown that there exist critical encasement length and stiffness of geogrid for a given condition.

  • PDF

Behaviour of fiber reinforced concrete beams with spliced tension steel reinforcement

  • Safan, Mohamed A.
    • Structural Engineering and Mechanics
    • /
    • 제43권5호
    • /
    • pp.623-636
    • /
    • 2012
  • The aim of the current work is to describe the flexural behaviour of simply supported concrete beams with tension reinforcement spliced at mid-span. The parameters included in the study were the type of the concrete, the splice length and the configuration of the hooked splice. Fifteen beams were cast using an ordinary concrete mix and two fiber reinforced concrete mixes incorporating steel and polypropylene fibers. Each concrete mix was used to cast five beams with continuous, spliced and hooked spliced tension steel bars. A test beam was reinforced on the tension side with two 12 mm bars and the splice length was 20 and 40 times the bar diameter. The hooked bars were spliced along 20 times the bar diameter and provided with 45-degree and 90-degree hooks. The test results in terms of cracking and ultimate loads, cracking patterns, ductility, and failure modes are reported. The results demonstrated the consequences due to short splices and the improvement in the structural behaviour due to the use of hooks and the confinement provided by the steel and polypropylene fibers.

윈도우 영역을 갖는 측방향으로 경사진 SCH-SLD의 설계에 관한 연구 (A Study on the Design of Laterally Tilted SCH-SLD with Window Region)

  • 황상구;김정호;김운섭;김동욱;안세경;홍창희
    • 한국정보통신학회논문지
    • /
    • 제5권4호
    • /
    • pp.777-790
    • /
    • 2001
  • 광통신용 광섬유의 최저손실 파장영역인 1.55w에서 고출력으로 안정하게 동작하는 SLD를 설계하기 위하여 이론적인 해석을 수행하였다. 활성영역과 SCH층의 재료는 Int-xGaxAsyPl-y를 이용하였다. 활성영역의 측방향과 횡방향 모드해석으로부터 단일모드 고출력 동작을 위한 광전력분포와 광가둠계수를 구하였으며, 이들 계산으로부터 최대 광가둠계수를 얻기 위한 SCH층의 조성과 두께를 계산하였다. 낮은 반사도를 얻기 위하여 후면 에 윈도우 영역을 두었고 활성영역과 윈도우 영역의 계면이 측방향으로 각도를 가지게 하였으며 가우시안빔 근사와 모드해석으로부터 반사도를 계산하였다. $1.3\mum$ InGaAsP를 SCH층으로 하였을 때 최대의 광가둠계수를 얻기 위한 SCH층의 두께는$0.08\mum$정도이었다. 10-4정도의 반사도를 얻기 위해서는 활성층의 두께를 $0.2\mum$, SCH 층의 두께를 $0.08\mum$ 로 하였을 때 무반사코팅을 하지 않을 경우 윈도우 영역의 길이는 $100\mum$ 정도이고, 반사도 1% 정도의 무반사 코팅을 할 경우 $10\mum$ 정도가 된다. 측면 경사각이 $10~15^{\circ}$이면 반사도는 10-3정도가 된다. 이들 결과로부터 AR코팅을 하지 않고도 윈도우 영역의 길이와 측면 경사각을 적당히 조절한다면 안정적으로 동작하는 SLD의 제작이 가능하다는 것을 알 수 있다.

  • PDF

2주형 다주교각의 연성도 및 소성힌지 영역에 관한 연구 (Assessment of Ductility and Plastic Hinge Region of Reinforced Concrete Multi-Column Bent)

  • 변순주;임정순
    • 한국방재학회 논문집
    • /
    • 제6권3호
    • /
    • pp.37-45
    • /
    • 2006
  • 다주교각의 횡방향 철근비에 따른 연성도 및 소성힌지 영역을 단주교각과 비교하여 평가하였다. 횡방향 철근비가 높을수록 연성도 증가는 뚜렷하며 다주교각의 경우 교축직각방향 거동시에는 단주보다 더 큰 연성도 증가를 보였다. 또한 횡철근 배근을 위한 소성힌지영역을 산정하였으며 목표연성도를 크게 할수록 횡구속 철근비의 증가와 함께 횡구속 되어야 하는 소성힌지영역 또한 높아져야함을 밝혔다. 다주교각의 방향별 거동에 따른 소성힌지 영역에는 차이가 있으며, 다주교각의 교축직각방향 거동시에는 모멘트 분포의 차이에 의해 보다 낮은 구간에서 소성변형을 보인다.

연약지반에 시공되는 지오그리드 감쌈 스톤컬럼의 하중지지 특성 (Load Carrying Capacity of Geogrid-Encased Stone Columns in Soft Ground)

  • 유충식;김선빈
    • 한국지반신소재학회논문집
    • /
    • 제7권4호
    • /
    • pp.25-36
    • /
    • 2008
  • 본 논문에서는 수치해석적 접근을 통해 연약지반에 시공되는 지오그리드 감쌈 스톤컬럼의 하중지지 특성을 고찰한 내용을 다루었다. 지오그리드로 감싼 스톤컬럼의 보강효과에 대해 검증된 유한요소모델을 이용하여 축대칭 및 3차원 응력-간극수압연계해석을 토대로 매개변수 연구를 수행하였다. 해석결과를 종합한 결과 지오그리드로 감싼 스톤컬럼의 하중지지 특성이 향상되는 경향을 나타내었다. 아울러 보강재의 감쌈길이와 축강성이 지오그리드 감쌈 스톤컬럼의 주된 설계변수가 되며, 지오그리드 보강효과를 극대화 할 수 있는 지오그리드의 임계감쌈길이 및 임계강성이 존재하는 것으로 나타났다.

  • PDF

고출력 AlGaAs SCH-SQW 레이저 다이오드 개발 (Development of High-Power AlGaAs SCH-SQW Laser Diode)

  • 손진승;계용찬;권오대
    • 전자공학회논문지A
    • /
    • 제30A권10호
    • /
    • pp.27-32
    • /
    • 1993
  • Separate-confinement hetero-structure (SCH) broad area Laser Diodes (LD's) were fabricated from $Al_{0.07}$Ga$_{0.93}$/. As single-quantum-well (SQW) grown by metal organic chemical vapor deposition (MOCVD). Under pulsed operation, we obtained maximum output powers of about 0.8watt/facet and 1.83watt/facet from LD's with 60$\mu$m and 160$\mu$m channel width, respectively, without facet coatings. The differential quantum efficiency of the 60$\mu$m wide LD was about 21.7%/facet and its threshold current density was about 1k [A/cm$^{2}$]. The differential quantum efficiency of the 160$\mu$m wide LD was about 25.6%/facet and its threshold current density was about 1k[A/cm$^{2}$]. The minimum threshold current density of 60$\mu$m wide LD's was 620[A/cm$^{2}$] when the cavity length was 603$\mu$m and the minimum threshold current density of 160$\mu$m wide Ld's was 675[A/cm$^{2}$] when the cavity length was 752$\mu$m. The internal quantum efficienty and the internal loss of both LD's were 92.3% and 18.1cm$^{1}$, respectively.

  • PDF

A study on the design of hexapole in an 18-GHz ECR ion source for heavy ion accelerators

  • Wei, Shaoqing;Zhang, Zhan;Lee, Sangjin;Choi, Sukjin
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제18권2호
    • /
    • pp.25-29
    • /
    • 2016
  • High charge state electron cyclotron resonance (ECR) ion source is important on the performance of heavy ion accelerators. In this paper, a low temperature superconductor (LTS) was used to make a hexapole coil for an 18-GHz ECR ion source. Several hexapole structures, including racetrack, graded racetrack, and saddle were implemented and analyzed for the hexapole-in-solenoid ECR ion source system. Under the appropriate radial confinement field, the smaller outer radius of hexapole can be better for the solenoid design. Saddle hexapole was selected by comparing the wire length, maximum outer radius of the hexapole, the Lorentz force at the end part of the hexapole and the maximum magnetic field in the coil. Based on saddle hexapole, a new design for hexapoles, the snake hexapole, was developed in this paper. By comparative analysis of the Lorentz force at the end part of the saddle and snake hexapoles, the snake hexapole is much better in the ECR ion source system. The suggested design for the ECR ion source with the snake hexapole is presented in this paper.

Response of lap splice of reinforcing bars confined by FRP wrapping: modeling approach

  • Thai, Dam Xuan;Pimanmas, Amorn
    • Structural Engineering and Mechanics
    • /
    • 제37권1호
    • /
    • pp.95-110
    • /
    • 2011
  • This paper presents a tri-uniform bond stress model for predicting the lap splice strength of reinforcing bar at the critical bond splitting failure. The proposed bond distribution model consists of three zones, namely, splitting zone, post-splitting zone and yielding zone. In each zone, the bond stress is assumed to be constant. The models for bond strength in each zone are adopted from previous studies. Combining the equilibrium, strain-slip relation and the bond strength model in each zone, the steel stress-slip model can be derived, which can be used in the nonlinear frame analysis of the column. The proposed model is applied to derive explicit equations for predicting the strength of the lap splice strengthened by fiber reinforced polymer (FRP) in both elastic and post-yield ranges. For design purpose, a procedure to calculate the required FRP thickness and the number of FRP sheets is also presented. A parametric investigation was conducted to study the relation between lap splice strength and lap splice length, number and thickness of FRP sheets and the ratio of concrete cover to bar diameter. The study shows that the lap splice strength can be enhanced by increasing one of these parameters: lap splice length, number or thickness of FRP sheets and concrete cover to bar diameter ratio. Verification of the model has been conducted using experimental data available in literature.

Cyclic testing of short-length buckling-restrained braces with detachable casings

  • Pandikkadavatha, Muhamed S.;Sahoo, Dipti R.
    • Earthquakes and Structures
    • /
    • 제10권3호
    • /
    • pp.699-716
    • /
    • 2016
  • Buckling-restrained braced frames (BRBFs) are commonly used as lateral force-resisting systems in the structures located in seismic-active regions. The nearly symmetric load-displacement behavior of buckling-restrained braces (BRBs) helps in dissipating the input seismic energy through metallic hysteresis. In this study, an experimental investigation has been conducted on the reduced-core length BRB (RCLBRB) specimens to evaluate their hysteretic and overall performance under gradually increased cyclic loading. Detachable casings are used for the concrete providing confinement to the steel core segments of all test specimens to facilitate the post-earthquake inspection of steel core elements. The influence of variable core clearance and the local detailing of casings on the cyclic performance of RCLBRB specimens has been studied. The RCLBRB specimen with the detachable casing system and a smaller core clearance at the end zone as compared to the central region exhibited excellent hysteretic behavior without any slip. Such RCLBRB showed balanced higher yielding deformed configuration up to a core strain of 4.2% without any premature instability. The strength-adjustment factors for the RCLBRB specimens are found to be nearly same as that of the conventional BRBs as noticed in the past studies. Simple expressions have been proposed based on the regression analysis to estimate the strength-adjustment factors and equivalent damping potential of the RCLBRB specimens.

Improvement of the cyclic response of RC columns with inadequate lap splices-Experimental and analytical investigation

  • Kalogeropoulos, George I.;Tsonos, Alexander-Dimitrios G.
    • Earthquakes and Structures
    • /
    • 제16권3호
    • /
    • pp.279-293
    • /
    • 2019
  • The overall seismic performance of existing pre 1960-70s reinforced concrete (RC) structures is significantly affected by the inadequate length of columns' lap-spliced reinforcement. Due to this crucial structural deficiency, the cyclic response is dominated by premature bond - slip failure, strength and stiffness degradation, poor energy dissipation capacity and low ductility. Recent earthquakes worldwide highlighted the importance of improving the load transfer mechanism between lap-spliced bars, while it was clearly demonstrated that the failure of lap splices may result in a devastating effect on structural integrity. Extensive experimental and analytical research was carried out herein, to evaluate the effectiveness and reliability of strengthening techniques applied to RC columns with lap-spliced reinforcement and also accurately predict the columns' response during an earthquake. Ten large scale cantilever column subassemblages, representative of columns found in existing pre 1970s RC structures, were constructed and strengthened by steel or RC jacketing. The enhanced specimens were imposed to earthquake-type loading and their lateral response was evaluated with respect to the hysteresis of two original and two control subassemblages. The main variables examined were the lap splice length, the steel jacket width and the amount of additional confinement offered by the jackets. Moreover, an analytical formulation proposed by Tsonos (2007a, 2019) was modified appropriately and applied to the lap splice region, to calculate shear stress developed in the concrete and predict if yielding of reinforcement is achieved. The accuracy of the analytical method was checked against experimental results from both the literature and the experimental work included herein.