• Title/Summary/Keyword: confinement length

Search Result 118, Processing Time 0.021 seconds

Long-Term Behavior of Square CFT Columns with Diaphragm (격막이 설치된 각형 CFT 기둥의 장기거동에 관한 연구)

  • Kwon Seung-Hee;Kim Tae-Hwan;Kim Yun-Yong;Kim Jin-keun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.1025-1032
    • /
    • 2005
  • This paper presents experimental and analytical studies on long-term behavior of square CFT columns with diaphragm. In order to investigate the effect of the diaphragm on the long~term behavior, experiments for six specimens with two diaphragms and three different column length, and three-dimensional finite element analysis for each specimen have been performed. The finite element models considering the interface behavior between the steel tube and the inner concrete were verified from comparison of the test results with the analysis results. From the test and the analysis results, the following conclusions were obtained. The confinement effect created by the diaphragm does not depends on column length and influences only a part of the whole column that is from the end to the depth which is the same to the width of the column. The shortening of the column with diaphragm which covers more than a half of the cross sectional area of the inner concrete is the same as that of the column under a load applied on the steel tube and the entire section of the inner concrete.

Design Approach for Boundary Element of Flexure-Governed RC Slender Shear Walls Based on Displacement Ductility Ratio (휨 항복형 철근콘크리트 전단벽의 경계요소설계를 위한 변위연성비 모델제시)

  • Mun, Ju-Hyun;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.687-694
    • /
    • 2014
  • This study established a displacement ductility ratio model for ductile design for the boundary element of shear walls. To determine the curvature distribution along the member length and displacement at the free end of the member, the distributions of strains and internal forces along the shear wall section depth were idealized based on the Bernoulli's principle, strain compatibility condition, and equilibrium condition of forces. The confinement effect at the boundary element, provided by transverse reinforcement, was calculated using the stress-strain relationship of confined concrete proposed by Razvi and Saatcioglu. The curvatures corresponding to the initial yielding moment and 80% of the ultimate state after the peak strength were then conversed into displacement values based on the concept of equivalent hinge length. The derived displacement ductility ratio model was simplified by the regression approach using the comprehensive analytical data obtained from the parametric study. The proposed model is in good agreement with test results, indicating that the mean and standard deviation of the ratios between predictions and experiments are 1.05 and 0.19, respectively. Overall, the proposed model is expected to be available for determining the transverse reinforcement ratio at the boundary element for a targeted displacement ductility ratio.

Longest First Binary Search on Prefix Length for IP Address Lookup (최장 길이 우선 검색에 기초한 프리픽스 길이에 따른 이진 IP 검색 구조)

  • Chu Ha-Neul;Lim Hye-Sook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.8B
    • /
    • pp.691-700
    • /
    • 2006
  • Based on the destination IP address of incoming packets, the Internet routers determine next hops and forward packets toward final destinations through If address lookup. The bandwidth of communication links increases exponentially fast as well as the routing table size grows significant as the number of single host networks attached to the Internet increases. Since packets should be processed at wire-speed, the increased link speed reduces the processing time of a packet in routers, and hence more efficient and fast IP address lookup algorithms and architectures are required in the next generation routers. Most of the previous IP lookup schemes compare routing prefixes of shorter length first with a given input IP address. Since IP address lookup needs to find the most specific route of the given input, search continues until the longest matched prefix is found while it keeps remembering the current test matching prefix. In this paper, based on binary search on prefix length, we proposed a new IP address lookup algorithm which compares longer prefixes first. The proposed scheme is consisted of multiple tries with prefixes on leaves only. The trie composed of the longest prefixes is primarily searched whether there is a match with the given input. This processing is repeated for the trio of the next longer prefixes until there finds a match. Hence the proposed algorithm provides the fast search speed. The proposed algorithm also provides the incremental update of prefixes while the previous binary search on length scheme does not provide the incremental update because of pre-processing requirement. In this paper, we performed extensive simulations and showed the performance comparisons with related works.

Characteristics of ZnO Nanorod/ZnO/Si(100) Grown by Hydrothermal Method (수열법으로 성장한 ZnO Nanorod/ZnO/Si(100)의 특성)

  • Jeong, Min-Ho;Jin, Yong-Sik;Choi, Sung-Min;Han, Duk-Dong;Choi, Dae-Kue
    • Korean Journal of Materials Research
    • /
    • v.22 no.4
    • /
    • pp.180-184
    • /
    • 2012
  • Nanostructures of ZnO, such as nanowires, nanorods, nanorings, and nanobelts have been actively studied and applied in electronic or optical devices owing to the increased surface to volume ratio and quantum confinement that they provide. ZnO seed layer (about 40 nm thick) was deposited on Si(100) substrate by RF magnetron sputtering with power of 60 W for 5 min. ZnO nanorods were grown on ZnO seed layer/Si(100) substrate at $95^{\circ}C$ for 5 hr by hydrothermal method with concentrations of $Zn(NO_3)_2{\cdot}6H_2O$ [ZNH] and $(CH_2)_6N_4$ [HMT] precursors ranging from 0.02M to 0.1M. We observed the microstructure, crystal structure, and photoluminescence of the nanorods. The ZnO nanorods grew with hexahedron shape to the c-axis at (002), and increased their diameter and length with the increase of precursor concentration. In 0.06 M and 0.08 M precursors, the mean aspect ratio values of ZnO nanorods were 6.8 and 6.5; also, ZnO nanorods had good crystal quality. Near band edge emission (NBE) and a deep level emission (DLE) were observed in all ZnO nanorod samples. The highest peak of NBE and the lower DLE appeared in 0.06 M precursor; however, the highest peak of DLE and the lower peak of NBE appeared in the 0.02 M precursor. It is possible to explain these phenomena as results of the better crystal quality and homogeneous shape of the nanorods in the precursor solution of 0.06 M, and as resulting from the bed crystal quality and the formation of Zn vacancies in the nanorods due to the lack of $Zn^{++}$ in the 0.02 M precursor.

A Study on the Characteristics of Behavior of Block-type Reinforced Earth Retaining Wall Considering Failure Surface (파괴면을 고려한 블록식 보강토 옹벽의 거동 특성 연구)

  • Yoon, Won-Sub;Park, Jun-Kyu;Chae, Young-Su
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.3
    • /
    • pp.13-26
    • /
    • 2016
  • In this study, more economical than conventional reinforced soil retaining walls, we compared the behavior characteristic about the safety block type numerically for reinforced retaining wall. In this study, reinforced soil retaining wall, first, was integrated a wall putting shear key on the blocks. Second, construction reinforcement focused on the theoretical failure surface was satisfied with the stability of a retaining wall reinforced by a shear plane. when analyzing, element of using reinforcement was carried out a numerical analysis for the cable element and the strip element, and they were analyzed under the conditions according to the stiffener length, distance, with or without shear key. Analysis for the integration of the front wall was reinforced soil retaining walls by installing a larger displacement shear key confinement effect, if reinforced construction and reinforcement with 1 interval and 2 interval, the failure surface was bigger displacement constraints. Generating a deformation amount was smaller than the generation amount of deformation accrued during construction of AASHTO so that it was stable.

Design Considerations and Pull-Out Behavior of Mechanical Anchor of Reinforcement (철근 기계적 정착장치의 설계 고려사항과 인발특성)

  • 천성철;김대영
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.593-601
    • /
    • 2001
  • In RC structure, sufficient anchorage of reinforcement is necessary for the member to produce the full strength. Generally, conventional standard hook is used for the reinforcement's anchorage. However, the use of standard hook results in steel congestion, making fabrication and construction difficult. Mechanical anchor offers a potential solution to these problems and may also ease fabrication, construction and concrete placement. In this paper, the required characteristics and the design considerations of mechanical anchor were studied. Also, the mechanical anchor was designed according to the requirements. To investigate the pull-out behavior and properness of mechanical anchorage, pull-out tests were performed. The parameters of tests were embedment length, diameter of reinforcement, concrete compressive strength, and spacing of reinforcements. The strengths of mechanical anchor were consistent with the predictions by CCD method. The slip between mechanical anchor and concrete could be controlled under 0.2mm. Therefore, the mechanical anchor with adequate embedment could be used for reinforcement's anchorage. However, it was observed that the strength of mechanical anchors with short spacing of reinforcements was greatly reduced. To apply the mechanical anchor in practice (e.g. anchorage of the beams reinforcements in beam-column joint), other effects that affect the mechanical anchor mechanism, such as confinement effect of adjacent member from frame action or effects of shear reinforcement, should be considered.

Vertical Growth of Amorphous SiOx Nano-Pillars by Pt Catalyst Films (Pt 촉매 박막을 이용한 비정질 SiOx 나노기둥의 수직성장)

  • Lee, Jee-Eon;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.699-704
    • /
    • 2018
  • One-dimensional nanostructures have attracted increasing attention because of their unique electronic, optical, optoelectrical, and electrochemical properties on account of their large surface-to-volume ratio and quantum confinement effect. Vertically grown nanowires have a large surface-to-volume ratio. The vapor-liquid-solid (VLS) process has attracted considerable attention for its self-alignment capability during the growth of nanostructures. In this study, vertically aligned silicon oxide nano-pillars were grown on Si\$SiO_2$(300 nm)\Pt substrates using two-zone thermal chemical vapor deposition system via the VLS process. The morphology and crystallographic properties of the grown silicon oxide nano-pillars were investigated by field emission scanning electron microscopy and transmission electron microscopy. The diameter and length of the grown silicon oxide nano-pillars were found to be dependent on the catalyst films. The body of the silicon oxide nano-pillars exhibited an amorphous phase, which is consisted with Si and O. The head of the silicon oxide nano-pillars was a crystalline phase, which is consisted with Si, O, Pt, and Ti. The vertical alignment of the silicon oxide nano-pillars was attributed to the preferred crystalline orientation of the catalyst Pt/Ti alloy. The vertically aligned silicon oxide nano-pillars are expected to be applied as a functional nano-material.

Numerical Study on Seismic Performance Evaluation of Circular Reinforced Concrete Piers Confined by Steel Plate (강판으로 보강된 원형철근콘크리트교각의 내진성능 평가에 관한 해석적 연구)

  • Lee, Myung-Jin;Park, Jong-Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.116-122
    • /
    • 2021
  • This study quantitatively evaluated the performance improvement of a circular reinforced concrete pier under dynamic load with strengthening using a steel plate. Various three-dimensional elements were applied using the finite element program ABAQUS. The analytical parameters included the ratios of the steel cover length to the pier's total height and the ratios of the steel cover thickness to the pier diameter for inelastic-nonlinear analysis. The lower part of the pier had fixed boundary conditions, and lateral repetitive loads were applied at the top of the pier. The pier was investigated to evaluate the dynamic performance based on the load-displacement curve, stress-strain curve, ductility, energy absorption capability, and energy ratio. The yield and ultimate loads of piers with steel covers increased by 3.76 times, and the energy absorption capability increased by 4 times due to the confinement effects caused by the steel plate. A plastic hinge part of the column with a steel plate improved the ductility, and the thicker the steel plate was, the greater the energy absorption capacity. This study shows that the reinforced pier should be improved in terms of the seismic performance.