• Title/Summary/Keyword: confinement effects

Search Result 223, Processing Time 0.024 seconds

Confinement efficiency and size effect of FRP confined circular concrete columns

  • Yeh, Fang-Yao;Chang, Kuo-Chun
    • Structural Engineering and Mechanics
    • /
    • v.26 no.2
    • /
    • pp.127-150
    • /
    • 2007
  • The objective of this paper is to develop a finite element procedure for predicting the compressive strength and ultimate axial strain of Carbon Fiber Reinforced Plastics (CFRP) confined circular concrete columns and to study the effective parameters of confinement efficiency for helping design of CFRP retrofit technology. The behavior of concrete confined with CFRP is studied using the nonlinear finite element method. In this paper, effects of column size, CFRP volumetric ratio and plain concrete strength are studied. The confined concrete nonlinear constitutive relation, concrete failure criterion and stiffness reduction methodology after concrete cracking or crushing are adopted. First, the finite element model is verified by comparing the numerical solutions of confined concrete with experimental results. Then the effects of column size, CFRP volumetric ratio and plain concrete strength on the peak strength and ductility of the confined concrete are considered. The results of parametric study indicate that the normalized column axial strength increases with increasing CFRP volumetric ratio, but without size effect for columns with the same CFRP volumetric ratio. As the same, the increase in column ductility depends on CFRP volumetric ratio but without size effect for columns with the same CFRP volumetric ratio.

Axial load behavior and stability strength of circular tubed steel reinforced concrete (SRC) columns

  • Yan, Biao;Liu, Jiepeng;Zhou, Xuhong
    • Steel and Composite Structures
    • /
    • v.25 no.5
    • /
    • pp.545-556
    • /
    • 2017
  • The tubed steel reinforced concrete (SRC) column is a composite column in which the outer steel tube is mainly used to provide confinement on the core concrete. This paper presents experimental and analytical studies on the behavior of circular tubed SRC (TSRC) columns subjected to axial compression. Eight circular TSRC columns were tested to investigate the effects of length-to-diameter ratio (L/D) of the specimens, diameter-to-thickness ratio (D/t) of the steel tubes, and use of stud shear connectors on the steel sections. Elastic-plastic analysis on the steel tubes was used to investigate the mechanism of confinement on the core concrete. The test results indicated that the tube confinement increased the strength and deformation capacity for both short and slender columns, and the effects on strength were more pronounced for short columns. A nonlinear finite element (FE) model was developed using ABAQUS, in which the nonlinear material behavior and initial geometric imperfection were included. Good agreement was achieved between the predicted results using the FE model and the test results. The test and FE results were compared with the predicted strengths calculated by Eurocode 4 and the AISC Standard. Based on the analytical results, a new design method for this composite column was proposed.

A Study on the Compression Behaviors of Concrete-filled Steel Tubular Columns (콘크리트 충전 강관기둥의 압축거동에 관한 연구)

  • Park, Kang-Geun;Yoon, Seoung-Hyun;Kim, Young-Tae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.1 no.2 s.2
    • /
    • pp.67-74
    • /
    • 2001
  • This paper is to estimate the load carrying capacities of concrete-filled steel tubular columns and the important parameters are selected the size, length and concrete strength. he concrete-filled tube structures has many excellent structural properties, that is, high load capacity, good plastic deformation and high resistance local buckling. Under these background, this study Investigated to the structural compression behaviors, the maximum strength, the confinement effects, the fracture mechanism, local buckling failure and concrete strength effects.

  • PDF

EFFECTS OF GEOMETRIC PARAMETERS ON NUCLEATE POOL BOILING OF SATURATED WATER IN VERTICAL ANNULI

  • Kang, Myeong-Gie
    • Nuclear Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.271-278
    • /
    • 2009
  • Nucleate pool boiling of water in vertical annuli at atmospheric pressure has been studied experimentally and two empirical correlations have been suggested to obtain effects of geometric parameters on heat transfer. Data of the present and the previous tests range over a tube length of 0.50-0.57 m, a diameter of 16.5-34.0 mm, and an annular gap size of 3.7-44.3 mm. Through the analysis, tube bottom confinement (open or closed) has been investigated, as well. The developed correlations predict experimental data within a ${\pm}25%$ error bound. It has been identified that effects of the diameter and the length of heated tubes as well as the annular gap size should be counted into the analyses to estimate heat transfer coefficients accurately.

Behavior of circular CFT columns subject to axial force and bending moment

  • Kwak, Ji-Hyun;Kwak, Hyo-Gyoung;Kim, Jin-Kook
    • Steel and Composite Structures
    • /
    • v.14 no.2
    • /
    • pp.173-190
    • /
    • 2013
  • The major objective of this paper is to evaluate the behavior and ultimate resisting capacity of circular CFT columns. To consider the confinement effect, proper material models with respect to the confinement pressure are selected. A fiber section approach is adopted to simulate the nonlinear stress distribution along the section depth. Material nonlinearity due to the cracking of concrete and the yielding of the surrounding steel tube, as well as geometric nonlinearity due to the P-${\Delta}$ effect, are taken into account. The validity of the proposed numerical analysis model is established by comparing the analytical predictions with the results from previous experimental studies about pure bending and eccentric axial loading. Numerical predictions using an unconfined material model were also compared to investigate the confinement effects on various loading combinations. The ultimate resisting capacities predicted by the proposed numerical model and the design guidelines in Eurocode 4 are compared to evaluate the existing design recommendation.

Confinement Effects of High Strength Reinforced Concrete Tied Columns (고강도 철근콘크리트 띠철근 기둥의 구속효과)

  • 신성우;한범석
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.578-588
    • /
    • 2002
  • An experimental study was conducted to investigate the effectiveness of transverse reinforcement in reinforced concrete tied columns subjected to monotonically increasing axial compression. Eighteen large-scale columns(260$\times$260$\times$1200 mm) were tested. Effects of main variables such as the concrete compressive strength, the tie configuration, the transverse reinforcement ratio, the tie spacing, and the spatting of the concrete cover were considered. High-strength concrete columns under concentric axial loads show extremely brittle behavior unless the columns are confined with transverse reinforcement that can provide sufficiently high lateral confinement pressure There is a consistent decrease in deformability of column specimen with increasing concrete strength. Test results were compared with the previous confinement model such as modified Kent-Park, Sheikh-Uzumeri, Mander, and Saatcioglu-Razvi model. The comparison indicates that many previous models for confined concrete overestimate or underestimate the ductility of confined concrete.

Experimental Study on Slenderness Effects in Concrete-Filled Glass Fiber Reinforced Polymer Composite Columns (콘크리트 충전 유리섬유 복합소재 기둥의 세장비 특성에 관한 실험적 연구)

  • Choi, Sok-Hwan;Lee, Sung-Woo;Sohn, Ki-Hoon;Lee, Myung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.585-590
    • /
    • 2001
  • The structural characteristics of concrete-filled glass fiber reinforced polymer tubes were studied. The concept of concrete-filled composite columns was introduced to overcome the corrosion problems associated with steel and concrete piles under severe environments. Other benefits of composite columns include low maintenance cost, high earthquake resistance, and long expected endurance period. Several experiments were conducted; 1) compression test for short-length composite columns, 2) uniaxial compression tests on a total of 7 columns with various slenderness ratios. Short-length columns give higher strength and ductility revealing high confinement action in concrete. Failure strengths, failure patterns, confinement effects, and stress-strains relations were analyzed for slender columns. Current study will show the feasibility of concrete-filled glass fiber reinforced polymer composite columns in corrosive environments, and will provide an experimental database for columns that are externally reinforced by multidirectional fibers.

  • PDF

Effects of Confinement and Transport Stress on Physiological Condition in Olive Flounder (Paralichthys olivaceus)

  • Hur, Jun-Wook;Park, Cheol-Young;Chang, Young-Jin;William H. Neill
    • Proceedings of the Korean Aquaculture Society Conference
    • /
    • 2003.10a
    • /
    • pp.105-106
    • /
    • 2003
  • Physiological responses (cortisol, glucose, lactic acid, osmolality and hematology) of olive flounder (Paralichthys olivaceus) to stressors associated with confinement and subsequent transport were investigated. Specimens were subjected to confinement stress for 3 h, prior to transport for 15 h. Two different size cohorts of the fish, large (839.6$\pm$162.7 g) and small (98.2$\pm$14.8 g), were used. Experimental cohorts of the fish were divided into 3 groups for blood sampling: group A, sampled at the beginning of confinement and 3 h before transport (BT, -3 h), after confinement and at the beginning of transport (BT, 0 h), 3 h after transport had begun (AT, 3 h), and after 15 h transport (AT, 15 h); group B, sampled at BT, 0 h, at AT, 3 h, and at AT, 15 h; and, group C, sampled at AT, 3 h, and at AT, 15 h. In the cohort of large fish, plasma cortisol levels of the A group were increased over time, from 4.2 ng/ml (BT, -3 h), to 92.0 ng/ml (BT, 0 h), 118.5 ng/ml (AT, 3 h) and 105.5 ng/ml (AT, 15 h). A similar pattern was evident in the B group, in which cortisol increased from 47.5 ng/ml (BT, 0 h) to 53.5 ng/ml (AT, 15 h); and, for the C group, in which cortisol increased from 43.5 ng/ml (AT, 3 h) to 71.5 ng/ml (AT, 15 h). Glucose levels of the A group also were significantly increased, from 39.5 mg/dl (BT, -3 h), to 121.0 mg/dl (BT, 0 h), 298.0 mg/dl (AT, 3 h) and 260.5 mg/dl (AT, 15 h). Lactic acid levels increased markedly during transport, from less than 1 mmol/L (BT, 0 h) to 12.0 mmol/L (AT, 15 h). Plasma osmolality increased from 405.5 mOsm/kg (BT, -3 h, for group A) to values near 500 mOsm/kg subsequent to confinement and transport. In the small-size cohort, plasma cortisol, glucose, lactic acid and osmolality levels showed similar but less pronounced trends than those observed for the large-size cohort. This research provides baseline data on cortisol, glucose, lactic acid, osmolality and hematological responses to confinement and transport, which should be useful to aquaculturists working with olive flounder and to scientists studying other flatfish species.

  • PDF

Effects of Bar Deformation Height on Bond Degradation Subject to Cyclic loading (반복하중시 철근 마디높이에 따른 부착 손상특성)

  • Lee, Jae-Yuel;Kim, Byong-Kook;Hong, Gi-Suop;Choi, Oan-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.17-24
    • /
    • 2003
  • One of the reasons for brittle failure in reinforced concrete structures subjected to severe earthquake is due to large local bond-slippage of bars resulting in fast bond degradation between reinforcing bars and concrete. This study aims to evaluate effects of bar deformation height on bond performance, specially, bond degradation under cyclic loading. Bond test specimens were constructed with machined bars with high relative rib areas. The degree of confinement by transverse bars is also another key parameters in this bond test. From test results, amounts of energy dissipation are calculated and compared for each parameter. Test results show that bond strength and stiffness drops significantly as cycles increases. The confinement and high relative rib area are effective to delay bond degradation, as the reduction of bond strength of cyclic loading compared to monotonic loading decreased for bars with large confinement and high relative rib areas. The energy dissipation also increases as the degree of confinement and relative rib area increases. However, tested bars with very high rib areas show that the bond may be damaged at relatively small slip because of high stiffness. The study will help to understand the bond degradation mechanism due to bar deformation height under cyclic loading and be useful to develop new deformed bars with high relative rib areas.

Evaluating the effects of finishing diet and feeding location on sheep performance, carcass characteristics, and internal parasites

  • Ragen, Devon L;Butler, Molly R;Boles, Jane A;Layton, William A;Craig, Thomas M;Hatfield, Patrick G
    • Journal of Animal Science and Technology
    • /
    • v.63 no.3
    • /
    • pp.545-562
    • /
    • 2021
  • A 3 yr experiment was conducted to evaluate the influence of diet and feeding location on animal performance, carcass characteristics, whole blood counts, and internal parasite burden of lambs assigned to 1 of 4 treatments: 1) confinement fed 71% alfalfa, 18% barley pellet, 5% molasses, 0.013% Bovatec, 6.1% vitamin/mineral package diet (CALF), 2) confinement fed 60% barley, 26% alfalfa pellet, 4% molasses, 2.5% soybean-hi pro, 0.016% Bovatec, 7.4% vitamin/mineral package diet (CBAR), 3) field fed 71% alfalfa, 18% barley pellet, 5% molasses, 0.013% Bovatec, 6.1% vitamin/mineral package diet (FALF), and 4) field fed 60% barley, 26% alfalfa pellet, 4% molasses, 2.5% soybean-hi pro, 0.016% Bovatec, 7.4% vitamin/mineral package diet (FBAR). A year × location interaction was detected for ending body weight (BW), average daily gain (ADG), and dry matter intake (DMI); therefore results are presented by year. In all years, cost of gain and DMI were greater for CALF and FALF than for CBAR and FBAR feed treatments (p ≤ 0.03). In yr 2 and 3 field treatments had greater ending BW and ADG than confinement treatments. For all years, diet did not affect ending BW or ADG. In yr 1 dressing percent and rib eye area were greater for field finished lambs than confinement finished (p ≤ 0.02) and Warner-Bratzler shear force was greater for CALF and FALF (p = 0.03). In yr 2 lambs in FALF and FBAR treatments had greater leg scores and conformation than CALF and CBAR (p = 0.09). In yr 1, FALF had a greater small intestine total worm count than all other treatments. In yr 1, ending Trichostrongyle type egg counts were greater for FALF (p = 0.05). In yr 2, ending Nematodirus spp. egg counts were greater for FALF and lowest for CBAR (p < 0.01). Abomasum Teladorsagia circumcinta worm burden was greater in CALF than all other treatments (p = 0.07) in yr 2. While field finishing lambs with a grain- or forage-based diet we conclude that it is possible to produce a quality lamb product without adverse effects to animal performance, carcass quality or increasing parasite burdens.