• Title/Summary/Keyword: confined pressure

Search Result 178, Processing Time 0.027 seconds

Development of an Algorithm for the Prevention and Management of Pressure Ulcers (입원 환자의 욕창예방과 중재를 위한 알고리즘 개발)

  • Kim, Jin-Mi;Park, Jeong-Sook
    • Korean Journal of Adult Nursing
    • /
    • v.22 no.4
    • /
    • pp.353-364
    • /
    • 2010
  • Purpose: The purpose of this study was to develop an algorithm for preventing and managing of pressure ulcer and to verify the its appropriateness. Methods: The first step was development of a pre-algorithm through a literature review and expert opinion. The second step was to establish content validity by submitting the algorithm questionnaires about the content to 12 experts. The third step was the revision of the algorithm. The fourth and last step was to establish the clinical validity of the algorithm with 25 experienced nurses. Results: For the ease of the practitioner the algorithm for prevention and the management of pressure ulcers was confined to one page depicting the main algorithm pathway and seven stepwise guidelines. The guidelines included skin care of pressure ulcer prevention, mechanical loading care, support surface care, reposition care of pressure ulcer, and Stages II, III and IV explanations along with debridement/wound irrigation and infection control. Most of all algorithm courses chosen more than 80% of agreement by expert index of content validity. The usefulness, appropriateness, and convenience of the algorithm were demonstrated through clinical validity with intensive care unit and ward nurses. Conclusion: The algorithm will improve the quality of pressure ulcer nursing care as it provides a model for decision making for clinical nurses as well as providing consistent and integrated nursing care for patients with pressure ulcer throughout an institution.

Experimental Study on the Characteristics of Pressure Fluctuation in the Combustion Chamber with Branch Tube (분기관을 가진 연소 챔버 내 압력변동 특성에 관한 실험적 연구)

  • Park, Jang-Hee;Lee, Dae-Keun;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.7
    • /
    • pp.552-558
    • /
    • 2009
  • An experimental study using the combustor with branch tube was conducted in order to model the industry combustor with FGR (flue gas recirculation) system and to study a thermo-acoustic instability generated by a branch tube. The branch tube is a structure used to modify a system geometry and then to change its pressure field, and the thermo-acoustic instability, usually occurs in a confined geometry, can result in serious problems on industrial combustors. Thus understanding of the instability created by modifying geometry of combustor is necessary to design and operate combustor with FGR system. Pressure fluctuation in the combustion chamber was observed according to diameter and length of branch and it was compared with the solution of 1-D wave equation. It was found that branch tube affects the pressure field in the combustion chamber, and the pressure fluctuation in the combustion chamber was reduced to almost zero when phase difference between an incipient wave in the combustion chamber and a reflected wave in the branch tube is $\pi$ at the branch point. Also, the reduction of pressure fluctuation is irrespective of the installed height of branch tube if it is below $h^*=0.9$ in the close-open tube and open-open tube.

Flying Characteristics of Running Tape above Rotating Head (I) (회전헤드에 대한 주행테이프의 부상특성 ( I ))

  • 민옥기;김수경
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.523-536
    • /
    • 1991
  • This dissertation analyzes the running mechanism of flexible and thin tape above rotating head through the numerical simulation and the experiment. The scope of analysis is confined to the phenomena of two dimensional elasto hydrodynamic lubrication between the protruded bump on a rotating cylinder and the running tape. This model is based on the elastic deformation equation of plate and shell and Reynolds equation. Finite difference method is employed as a numerical technique to calculate (1) the distribution of pressure between the running tape and rotating bump and (2) the vertical deformation of elastic thin tape over he rotating bump under hydrodynamic pressure. In numerical analyses, the effects of bump size on flying characteristics of the tape were evaluated and examined considering the influence of tension and stiffness of tape.

Improvement of the Medical Bed for Preventing Decubitus Ulcer through Motion Analysis (운동 분석을 통한 욕창 방지용 침대 기구의 개선)

  • 심창섭;심재경;권진욱;임득재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.713-718
    • /
    • 2003
  • Decubitus ulcer is a pressure-induced ulceration of the skin occurring in persons confined to bed for long periods of time. In order to prevent decubitus ulcer, the medical bed mechanism to minimize pressure, friction, and shear forces acting between bed and patient had been developed. Air mattress also can be effective for reducing pressure over bony prominence. In this study, motion analysis was performed to examine whether this bed mechanism functioned properly in case of using air mattress, which was much thicker than common hospital mattress. We found that the patient on the air mattress above the medical bed for preventing decubitus ulcer slipped upward and downward excessively as the general motored-bed. New bed mechanisms were synthesized kinematically using simple 4-bar and 6-bar linkages so as to reduce sliding between the bed and the patient on the air mattress for preventing decubitus ulcer.

  • PDF

The Study on the Evaluation of Contact Pressure of Wheelchair Seat Cushion (횔체어 시트쿠션의 접촉 압력 평가에 관한 연구)

  • Kang, Young-Sig;Yang, Sung-Hwan;Cho, Mun-Son;Sin, You-Min
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2010.04a
    • /
    • pp.61-69
    • /
    • 2010
  • The users who use the wheelchair are confined to a wheelchair for a long time. Accordingly, the use of seat cushion for pressure distribution is very important in order to prevent a bedsore. Therefore, this paper provides useful information for design of seat cushion through statistical testing among nothing cushion, low cell type of air cushion, high cell type of air cushion, and jelly type of air cushion. It turned out that the jelly type and high cell type of air cushion have a serious effect on decision and design of seat cushion.

  • PDF

Numerical study on the effect of viscoelasticity on pressure drop and film thickness for a droplet flow in a confined microchannel

  • Chung, Chang-Kwon;Kim, Ju-Min;Ahn, Kyung-Hyun;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.1
    • /
    • pp.59-69
    • /
    • 2009
  • The prediction of pressure drop for a droplet flow in a confined micro channel is presented using FE-FTM (Finite Element - Front Tracking Method). A single droplet is passing through 5:1:5 contraction - straight narrow channel - expansion flow domain. The pressure drop is investigated especially when the droplet flows in the straight narrow channel. We explore the effects of droplet size, capillary number (Ca), viscosity ratio ($\chi$) between droplet and medium, and fluid elasticity represented by the Oldroyd-B constitutive model on the excess pressure drop (${\Delta}p^+$) against single phase flow. The tightly fitted droplets in the narrow channel are mainly considered in the range of $0.001{\leq}Ca{\leq}1$ and $0.01{\leq}{\chi}{\leq}100$. In Newtonian droplet/Newtonian medium, two characteristic features are observed. First, an approximate relation ${\Delta}p^+{\sim}{\chi}$ observed for ${\chi}{\geq}1$. The excess pressure drop necessary for droplet flow is roughly proportional to $\chi$. Second, ${\Delta}p^+$ seems inversely proportional to Ca, which is represented as ${\Delta}p^+{\sim}Ca^m$ with negative m irrespective of $\chi$. In addition, we observe that the film thickness (${\delta}_f$) between droplet interface and channel wall decreases with decreasing Ca, showing ${\delta}_f{\sim}Ca^n$ Can with positive n independent of $\chi$. Consequently, the excess pressure drop (${\Delta}p^+$) is strongly dependent on the film thickness (${\delta}_f$). The droplets larger than the channel width show enhancement of ${\Delta}p^+$, whereas the smaller droplets show no significant change in ${\Delta}p^+$. Also, the droplet deformation in the narrow channel is affected by the flow history of the contraction flow at the entrance region, but rather surprisingly ${\Delta}p^+$ is not affected by this flow history. Instead, ${\Delta}p^+$ is more dependent on ${\delta}_f$ irrespective of the droplet shape. As for the effect of fluid elasticity, an increase in ${\delta}_f$ induced by the normal stress difference in viscoelastic medium results in a drastic reduction of ${\Delta}p^+$.

Rupture Safety Assesment of Bipropellant Propulsion System at High Pressure Testing (이원 추진 시스템 고압 시험시의 파열 안전성 고찰)

  • Chang, Se-Myong;Han, Cho-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.6
    • /
    • pp.605-611
    • /
    • 2010
  • The geostationary satellite COMS is going to be launched in 2010, and, in the series of test, there are some high-pressure tests concerning the vessel tank filled with helium gas of hundreds atmospheric pressure. In this paper, authors evaluates risk associated with accidental rupture of the test system. Two possible scenarios are considered: 1) the 310-bar helium tank ruptures at the center of the acoustic chamber, and 2) the 116-bar reduced-pressure helium tank ruptures in the test room shielded by bullet-proof glasses. Using the theory of blast wave propagation and computational simulation, the dynamics of wave reflected in a confined space is investigated for highly complex unsteady flow physics.

Study on the Performance Improvement of the Aftermarket Automotive Muffler (비순정품 자동차 머플러의 성능개선)

  • Lee, Sung-Won;Choi, Doo-Seuk;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2602-2608
    • /
    • 2009
  • Aftermarket muffler has been developed mainly by personal experience and trial-and error and has not been properly simulated or evaluated its performance. One of the aftermarket muffler problems is that the aftermarket muffler has quite high pressure-drop across the passage. To reduce the pressure-drop, various simulation and test has been performed for various muffler models. As a result, the muffler that has superior pressure-drop and vibration characteristics compared to the previous muffler has been developed. Developed aftermarket muffler has a structure that avoids confined space causing vibration due to exhaust pressure pulsation and bisects an inlet pipe from the engine.

OPTIMAL SPUTTERING CONDITIONS FOR HIGH-DENSITY MAGNETIC RECORDING MEDIA BY FTS

  • Noda, Kohki;Kawanabe, Takashi;Naoe, Masahiko
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.824-828
    • /
    • 1996
  • Co-based alloy thin films ddeposited by fcing targets sputtering(FTS) were investigated for use in high-density magnetic recording media to determine how their magnetic properties are dependent on the sputtering conditions, and thus to find appropriate parameters that allow the sputtering and thin films to meet the specificiations for magnetic properties. FTS can discharge at lower working gas pressure than other sputtering methods such as dcmagnetron sputteing because the plasma is sufficiently confined by a magnetic field applied perpendicular to both of the target planes, which results in plasma-free substrates. Co-Cr-Ta films were deposited by FTS on glass and silicon substrates at substrate temperature between room temperature and $350^{\circ}C$, and at argon gas pressure between 0.1 and 10mTorr. The films were also deposited on polyimide tapes at substrate temperature of $130^{\circ}C$ and argon gas pressure of 1 mTorr. The effective advantages of Ta as an additional element were investigated, using the same films on the tapes. As a result of the experiment, it was found that better magnetic properties were obtained in the ranges of higher temperature and lower argon gas pressure with background pressure in thr range of $1.5 \times 10^{-6}$ Torr. Ta addition at 2 to 4 atomic percent almost havled the Co-Cr grain sizes, indicating that Ta addition at an appropriate atomic percent is effective for improving the microstructure and characteristics of Co-Cr films.

  • PDF

A Study on Physicochemical Characteristics of Hydrogen Gas Explosion (수소가스 폭발의 물리화학적 특성 연구)

  • Jo, Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.1
    • /
    • pp.8-14
    • /
    • 2012
  • Hydrogen is considered to be the most important future energy carrier in many applications reducing significantly greenhouse gas emissions, but the explosion safety issues associated with hydrogen applications need to be investigated and fully understood to be applicable as the carrier. The risk associated with a explosion depends on an understanding of the impacts of the explosion, particularly the pressure-time history during the explosion. This work provides the effects of explosion parameters, such as specific heat ratio of burned and unburned gas, equilibrium maximum explosion pressure, and burning velocity, on the pressure-time history with flame growth model. The pressure-time history is dominantly depending on the burning velocity and equilibrium maximum explosion pressure of hydrogen-air mixture. The pressure rise rate increase with the burning velocity and equilibrium maximum explosion pressure. The specific heat ratio of unburned gas has more effect on the final explosion pressure increase rate than initial explosion pressure increase rate. However, the specific heat ratio of burned gas has more influence on initial explosion pressure increase rate. The flame speeds are obtained by fitting the experimental data sets. The flame speeds for hydrogen in air based on our experimental data is very low, making a transition from deflagration to detonation in a confined space unlikely under these conditions.