• 제목/요약/키워드: cone-type brake device

검색결과 4건 처리시간 0.016초

소성변형을 갖는 원통형 제동장치의 동적거동에 관한 유한요소해석 (Finite Element Analysis on the Dynamic Behavior of a Cylindrical Brake Device with Plastic Deformation)

  • 김지철;이학렬;심우전
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제32회 추계학술대회 정기총회
    • /
    • pp.199-204
    • /
    • 2000
  • A cylindrical brake device with plastic deformation is designed to stop the object moving at high velocity. Baseline model is determined based on the design specification and analytic solutions. Using finite element method, effects of various design parameters, such as thickness of the cylinder, clearance between cylinder and rod, and cone angle, to the performance of the brake device are investigated. Cone-type brake device shows better performance than cylindrical brake device with constant thickness in that plastic hinges are generated sequentially from impact end to fixed boundary, thus increasing the reliability of braking operation.

  • PDF

Design of the Brake Device Using the Axial Crushing of Truncated Cone Type Cylinder

  • Kim, Ji-Chul;Shim, Woo-Jeon
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.387-388
    • /
    • 2002
  • A Brake device for the high-speed impacting object is designed using an axial crushing of thin-walled metal cylinder, Thickness of the cylinder is increased smoothly from the impacting end to the fixed end, resulting in the truncated cone shape. Truncated cone shape ensures that plastic hinges are formed sequentially from impacting end. This increases the reliability of brake device working. Computational and real experiments were performed to verify the effects of conical angle. Results indicate that undesirable sudden rise of crushing load can be prevented by applying appropriate conical angle.

  • PDF

콘 형상 제동장치의 축방향 압축변형에 대한 실험적 연구 (Experimental Study on the Axial Crushing Behavior of Truncated Cone Type Brake Device)

  • 김지철;이학렬;김일수;심우전
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 제35회 춘계학술대회
    • /
    • pp.169-176
    • /
    • 2002
  • Axial crushing behavior of cylindrical shell Is utilized in the braking of the high-velocity impacting object. In this paper, truncated cone shape brake device is introduced. That is, thickness of the shell is increased gradually from the impacting end to the other end. A detailed experimental investigation on the quasi-static axial crushing behavior of truncated cone type brake devices has been performed. Specimens of various shape were tested to check the influence of design parameters such as length, radius, mean thickness, and conical angle of cylinder. Influence of the material properties were also investigated by adopting aluminum, low carbon steel, and stainless steel as constructing materials. By analyzing deformation procedures of the specimens, it is seen that conical angle influence the deformation mode and the sequence of the wrinkles generation. Braking distance and mean braking force of each specimen were predicted based on the crushing load measured from the tests.

  • PDF

콘 형상 실린더의 축 방향 압축변형을 이용한 충격흡수장치 설계 (Design of Energy Absorption Device Using the Axial Crushing Behavior of Truncated Cone Type Cylinder)

  • 김지철;이학렬;김일수;심우전;박동화
    • Tribology and Lubricants
    • /
    • 제19권5호
    • /
    • pp.259-267
    • /
    • 2003
  • A brake device for the high-speed impacting object is designed using an axial crushing of thin-walled metal cylinder. Thickness of the cylinder is increased smoothly from the impacting end to the fixed end, resulting in the truncated cone shape. Truncated cone shape minimizes the imperfection-sensitivity of the structure and ensures that plastic hinges are formed sequentially from impacting end. This prevents the undesirable sudden rise in the first peak-crushing load. Several specimens with different conic angles, mean thickness of the wall, and materials were designed and quasi-static compression tests were performed on them. Results indicate that adoption of appropriate conic angle prevents simultaneous wrinkles generation and sudden rise of crushing load and that appropriate conic angle differs in each case, depending on the geometry and material property of the cylinder. Finite element analysis was performed for static compression of the cylinder and its accuracy was checked for the future application.