• Title/Summary/Keyword: conductive rubber belt

Search Result 1, Processing Time 0.014 seconds

Characteristics of conductive rubber belt on the abdomen to monitor respiration (호흡 감지를 위한 복부 부착형 전도성 고무소자의 계측특성)

  • Kim, Kyung-Ah;Kim, Sung-Sik;Cho, Dong-Wook;Lee, Seung-Jik;Lee, Tae-Soo;Cha, Eun-Jong
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.24-32
    • /
    • 2007
  • Conductive rubber material was molded in a belt shape to measure respiration. Its resistivity was approximately $0.03{\;}{\Omega}m$ and the resistance-displacement relationship showed a negative exponent. The temperature coefficient was approximately $0.006{\;}k{\Omega}/^{\circ}C$ negligible when practically applied on the abdomen. The conductive rubber belt was applied on a normal male's abdomen with the dimensional change measured during resting breathing. The abdominal signal was differentiated ($F_{m}$) and compared with the accurate standard air flow rate signal ($F_{s}$) obtained by pneumotachometry. $F_{m}$ and $F_{s}$ differed in waveform, but the start and end timings of each breaths were clearly synchronized, demonstrating that the respiratory frequency could be accurately estimated before further processing of $F_{m}$. $F_{m}-F_{s}$ loop showed a nonlinear hysteresis within each breath period, thus 6 piecewise linear approximation was performed, leading to a mean relative error of 14 %. This error level was relatively large for clinical application, though customized calibration seemed feasible for monitoring general variation of ventilation. The present technique would be of convenient and practical application as a new wearable respiratory transducer.