• Title/Summary/Keyword: conductive rubber

Search Result 67, Processing Time 0.022 seconds

MONO-MATERIAL PRSSURE-CONDUCTIVE RUBBER SENSOR WITH TEMPERATURE SENSITIVITY FOR REALIZING ARTIFICIAL SKIN SENSING

  • Yuji, Jun-ichiro;Shida, Katsunori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1314-1317
    • /
    • 1997
  • For realizing artificial skin sensing as a final goal, a mono-material pressure-conductive rubber sensor which is also sensitive for temperature is described. Firstly, discimination of the hardness and the thermal property of material using a proposed sensor is presented. Furthermore, a tactile sensor constints of four pressure-conductive rubber sensor to discriminate surface model which imitaties the surface roughness of material is proposed.

  • PDF

Preparation of Conductive Silicone Rubber Sheets by Electroless Nickel Plating (무전해 니켈도금에 의한 도전성 실리콘고무 시트의 제조)

  • Lee, Byeong Woo;Lee, Jin Hee
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.5
    • /
    • pp.269-274
    • /
    • 2014
  • Electroless plating process as a solution deposition method is a viable means of preparing conductive metal films on non-conducting substrates through chemical reactions. In the present study, the preparation and properties of electroless Ni-plating on flexible silicone rubber are described. The process has been performed using a conventional Ni(P) chemical bath. Additives and complexing agents such as ammonium chloride and glycine were added and the reaction pH was controlled by NaOH aqueous solution. Ni deposition rate and crystallinity have been found to vary with pH and temperature of the plating bath. It was shown that Ni-films having the high crystallinity, enhanced adhesion and optimum electric conductivity were formed uniformly on silicone rubber substrates under pH 7 at $70^{\circ}C$. The conductive Ni-plated silicone rubber showed a high electromagnetic interference shielding effect in the 400 MHz-1 GHz range.

The Effect of Plasma Treatment on Surface Properties and Adhesion Characteristics of semiconductive Silicone Rubber (반도전성 실리콘 고무의 표면 특성과 접착특성에 미치는 플라즈마 처리의 영향)

  • Hwang, Sun-Mook;Hong, Joo-Il;Hwang, Cheong-Ho;Huh, Chang-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.254-255
    • /
    • 2005
  • In this work, the effects of plasma treatment on surface properties of semi conductive silicone rubber were investigated in terms of X-ray photoelectron spectroscopy(XPS). The adhesion characteristics of semiconductive-insulating interface layer of silicone rubber were studied by measuring the T-peel strengths. As a result, semiconductive silicone rubber surfaces treated with plasma discharge led to and increase in oxygen-containing functional groups, resulting in improving the degree of adhesion of the semiconductive-insulating interface layer of silicone rubber. these results are probably due to the modifications of surface functional groups or polar component of surface free energy of the semi conductive silicone rubber.

  • PDF

Conductive Rubber for Enhanced Safety in Hydrogen-based Facilities from Electrostatic Discharge (도전성 고무 매트를 이용한 수소 기반 시설에서 제전 신뢰성 향상)

  • S. Lee;J. Ko;J. Song;C. Kim;C. Kim;H. S. Kim;M. E. Hur;Chung J. H.;H. J. Song
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.1
    • /
    • pp.9-15
    • /
    • 2024
  • Hydrogen-based electricity and transportation systems are widely recognized as sustainable power sources. However, the low ignition energy of hydrogen, only 1/10th that of conventional fossil fuels, poses a safety concern involving the risk of ignition due to electrostatic discharge from facility workers. Therefore, anti-static systems are imperative for hydrogen-based electricity facilities. To address this, we propose a reliable conductive rubber mat (CRM) to ensure the safety of these facilities. Unlike conventional anti-static floors that utilize conductive paint (CP), the CRM features a uniform distribution of conductive components in chemically and mechanically stable rubber. As a result, the CRM is unyielding to polar solvents (such as ethanol and hydrosulfuric acid) and non-polar solvents (like mineral oil) without increasing its resistance. Moreover, the CRM can withstand mechanical stress. Consequently, the human-body voltage of workers on the CRM would be sufficiently low enough to protect them from hydrogen explosions, thereby enhancing overall safety.

Zigbee Based Wireless Respiration Monitor System (지그비 통신 기반의 근거리 무선 호흡모니터 시스템)

  • Lee, In-Kwang;Kim, Seong-Sik;Jang, Jong-Chan;Kim, Koon-Jin;Kim, Kyung-Ah;Lee, Tae-Soo;Cha, Eun-Jong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.1
    • /
    • pp.142-147
    • /
    • 2008
  • Abdominal circumference changes due to breathing by the respiratory muscle activity such as diaphragm, which would partially represent the lung volume variation. The present study introduced conductive rubber molded in a cord shape incorporated with a patient's pants. The conductive rubber cord operated as a displacement transducer to measure the lung or abdominal volume changes. Signal extraction circuitry was developed to obtain the volume and its derivative(or the flow) signals followed by wireless transmission based on the Zigbee communication protocol in a size of $65mm{\times}105mm$ easily put in pocket. Breathing frequency was accurately evaluated and breath pattern analysis seemed feasible, since respiratory behaviours such as maximal inspiration and cough were well identified. Remote wireless receiver module also enabled to monitor both volume and flow signals during resting breathing on a PC terminal.

Improvement in Interfacial Performances of Silicone Rubber by Oxygen Plasma Treatment

  • Lee, Ki-Taek;Seo, Yu-Jin;Huh, Chang-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.232-233
    • /
    • 2005
  • The Surface of semi-conductive silicone rubber was treated by oxygen plasma to improve adhesion and electric performance in joints between insulating and semi-conductive silicone materials. Surface characterizations were assessed using contact angle measurement and Fourier transform infrared spectroscope (FTIR). Adhesion level was understood from T-peel tests between plasma treated semi-conductive and insulating material. Electrical breakdown strength was measured to understand the charge of electrical performance. From the results, the oxygen plasma treatment produces a significant increase in function group of containing oxygen which can be mainly ascribed to the creation of carbonyl groups on the silicone surface from the strength were improved. Therefore it is concluded then plasma treatment leads to decrease voids originating form poor adhesive, and the improve the adhesion in silicone interface. So we could obtain higher electrical design level of silicone material used for electrical apparatus using oxygen plasma treatment.

  • PDF

Characteristics of conductive rubber belt on the abdomen to monitor respiration (호흡 감지를 위한 복부 부착형 전도성 고무소자의 계측특성)

  • Kim, Kyung-Ah;Kim, Sung-Sik;Cho, Dong-Wook;Lee, Seung-Jik;Lee, Tae-Soo;Cha, Eun-Jong
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.24-32
    • /
    • 2007
  • Conductive rubber material was molded in a belt shape to measure respiration. Its resistivity was approximately $0.03{\;}{\Omega}m$ and the resistance-displacement relationship showed a negative exponent. The temperature coefficient was approximately $0.006{\;}k{\Omega}/^{\circ}C$ negligible when practically applied on the abdomen. The conductive rubber belt was applied on a normal male's abdomen with the dimensional change measured during resting breathing. The abdominal signal was differentiated ($F_{m}$) and compared with the accurate standard air flow rate signal ($F_{s}$) obtained by pneumotachometry. $F_{m}$ and $F_{s}$ differed in waveform, but the start and end timings of each breaths were clearly synchronized, demonstrating that the respiratory frequency could be accurately estimated before further processing of $F_{m}$. $F_{m}-F_{s}$ loop showed a nonlinear hysteresis within each breath period, thus 6 piecewise linear approximation was performed, leading to a mean relative error of 14 %. This error level was relatively large for clinical application, though customized calibration seemed feasible for monitoring general variation of ventilation. The present technique would be of convenient and practical application as a new wearable respiratory transducer.

Preparation and Characterization of Elastomeric Conductor based on Magnetite and Chloroprene Rubber ($Fe_3O_4$와 Chloroprene Rubber (CR)를 기초로한 탄성 전도체의 제조 및 특성연구)

  • Choi, Kyo-Chang;Lee, Eun-Kyoung;Choi, Seo-Young
    • Elastomers and Composites
    • /
    • v.38 no.1
    • /
    • pp.81-87
    • /
    • 2003
  • In this work, $Fe_3O_4$ (magnetite), conductive filler was prepared from $FeCl_2{\cdot}4H_2O,\;(CH_2)_6N_4$ (hexamethylene tetramine), and $NaNO_2$, followed by mixing with crystallizable chloroprene rubber(CR). The influence of conductive filler content on the properties of the conductive composite was studied and temperature dependence of the electrical conductivity (${\sigma}$) was also investigated. It is found that the percolation threshold concept holds true for the conductive particle-filled composite where ${\sigma}$ indicates a nearly sharp increase when the fraction of magnetite in the mixture exceeds 27%. The temperature dependence of ${\sigma}$ is thermally activated blelow or at the $P_c$. Magnetite acts as reinforcement and conductive filler for CR rubber. Moreover, it is shown that the composite with magnetite of 50 phr gives the most significant mechanical properties for tensile strength and elongation at break, which is due to the formation of optimum physical interlock and crosslinking. The results of 100%, 200%, and 300% moduli suggest that the moduli are related with reinforcement effect of magnetite and viscosity of the blend.

Accuracy Evaluation of Tidal Volume Measured on the Abdomen (복부에서 측정하는 일회 호흡용적의 정확도 평가)

  • Lee, In-Kwang;Kim, Seong-Sik;Jang, Jong-Chan;Kim, Koon-Jin;Kim, Kyung-Ah;Lee, Tae-Soo;Cha, Eun-Jong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.7
    • /
    • pp.1298-1303
    • /
    • 2008
  • Respiration is induced by muscular contraction of the chest and abdomen, resulting in the abdominal volume change. Thus, continuous measurement of the abdominal dimension enables to monitor breathing activity. Conductive rubber cord has been previously introduced and tested to develop wearable application for respiratory measurements. This study implemented respiratory monitoring system with the conductive rubber cord in the patient's pants in purpose of quantitative estimation of tidal volume. Air mixed with $0{\sim}5%$ $CO_2$ was inhaled and the respiratory air flow rate, abdominal dimension change, and end tidal $CO_2$ concentration were simultaneously measured in steady state. $CO_2$ inhalation significantly increased the tidal volume in normal physiological state with the subject unawared. The tidal volume estimated from the abdominal dimension change linearly correlated with the tidal volume measured by a pneumotachometer with a correlation coefficient of 0.88. Customized calibration for each subject resulted in relative errors less than 10%. Therefore, the tidal volume was accurately estimated by measuring the abdominal dimension change.