• Title/Summary/Keyword: conductive printing

Search Result 150, Processing Time 0.029 seconds

The Manufacture of Conductive paste for OTFT source & drain contacts Fabricated by Direct printing method (Direct Printing법에 의해 제작된 OTFT용 source & drain 전극용 전도성 페이스트 제조)

  • Lee, Mi-Young;Nam, Su-Yong;Kim, Seong-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.384-385
    • /
    • 2006
  • We studied about conductive pastes of the source-drain contacts for OTFTs(organic thin-film transistors) fabricated by direct printing(screen printing) method. We used Ag and conductive carbon black powder as the conductive fillers of pastes. The conductive pastes were manufactured by various dispersing agents and dispersing conditions and source-drain contacts with $100{\mu}m$ of channel length were fabricated. We could obtain the OTFTs which exhibited different field-effect behaviors over a range of source-dram and gate voltages depending on a kind of conductive fillers used conductive pastes.

  • PDF

Study on Electrical Characteristics of FDM Conductive 3D Printing According to Annealing Conditions (FDM 3D 전도성 프린팅 어닐링 조건 따른 전기적 특성 연구)

  • Lee, Sun Kon;Kim, Yong Rae;Yoo, Tae Jung;Park, Ji Hye;Kim, Joo Hyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.53-60
    • /
    • 2018
  • In this paper, the effect of different 3D printing parameters including laminated angle and annealing temperature is observed their effect on FDM conductive 3D printing. In FDM 3D printing, a conductive filament is heated quickly, extruded, and then cooled rapidly. FDM 3D Print conductive filament is a poor heat conductor, it heats and cools unevenly causing the rapid heating and cooling to create internal stress. when the printed conductive specimens this internal stress can be increase electrical resistance and decrease electrical conductivity. Therefore, This experiment would like to use annealing to remove internal stress and increase electrical conductivity. The result of experiment when 3D printing conductive specimen be oven cooling of annealing temperature $120^{\circ}C$ electrical resistance appeared decrease than before annealing. So We have found that 3D printing annealing removes internal stresses and increases the electrical conductivity of printed specimens. These results are very useful for making conductive 3D printing electronic circuit, sensor ect...with electrical conductance suitable for the application.

Micro Patterning of Nano Metal Ink for Printed Circuit Board Using Inkjet Printing Technology (잉크젯 프린팅 기술을 이용한 나노 금속잉크의 인쇄회로기판용 미세배선 형성)

  • Park, Sung-Jun;Seo, Shang-Hoon;Joung, Jae-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.5
    • /
    • pp.89-96
    • /
    • 2007
  • Inkjet printing has become one of the most attractive manufacturing techniques in industry. Especially inkjet printing technology will soon be part of the PCB (Printed Circuit Board) fabrication processes. Traditional printing on PCB includes screen printing and photolithography. These technologies involve high costs, time-consuming procedures and several process steps. However, by inkjet technology manufacturing time and production costs can be reduced, and procedures can be more efficient. PCB manufacturers therefore willingly accept this inkjet technology to the PCB industry, and are quickly shifting from conventional to inkjet printing. To produce the printed circuit board by the inkjet technology, it must be harmonized with conductive nano ink, printing process, system, and inkjet printhead. In this study, micro patterning of conductive line has been investigated using the piezoelectric printhead driven by a bipolar voltage signal is used to dispense 20-40 ${\mu}m$ diameter droplets and silver nano ink which consists of 1 to 50 nm silver particles that are homogeneously suspended in an organic carrier. To fabricate a conductive line used in PCB with high precision, a printed line width was calculated and compared with printing results.

A Study on Contacts for Organic thin-film transistors fabricated by Screen Printing Method (스크린 인쇄법에 의해 제작된 유기 박막 트랜지스터용 전극에 관한 연구)

  • Lee Mi-Young;Nam Su-Yong
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.591-592
    • /
    • 2006
  • We studied about the manufacture of the drain-source contacts for OTFTs(organic thin-film transistors) by using screen printing method. The conductive fillers used Ag and carbon black. The conductive contacts with $100{\mu}m$ of channel length were screen printed on a silicon dioxide gate dielectric layer and, the pentacene semiconductor was deposited via vacuum deposition. As a result of studying various conductive pastes, we could obtain the OTFTs which exhibited field-effect behavior over arrange of drain-source and gate voltages, similar to devices employing deposited Au contacts. By using screen-printing with conductive paste, the contacts are processed at low temperature, thereby facilitating their integration with heat sensitive substrates.

  • PDF

A Study on Pre-treatment and Performance Evaluation for Printing RFID Antenna with Conductive Paste (RFID 안테나용 전도성 프린팅을 위한 PET 직물의 최적 전처리 공정연구 및 성능평가)

  • Hong, Jinpyo;Jung, Chando;Yoon, Seokhan;Choi, Sanghyun
    • Textile Coloration and Finishing
    • /
    • v.25 no.4
    • /
    • pp.287-291
    • /
    • 2013
  • Nowadays, terms such as 'Smart Textile', 'Intelligent Textile' and 'Wearable Computing' are commonly used in everyday contexts. And radio-frequency identification (RFID) is the use of a wireless non-contact system that uses radio-frequency electromagnetic fields to transfer data from a tag attached to an object, for the purposes of automatic identification and tracking. These products are required technologies which are textile treatments, printing, ink, etc. Durability of textile substrates is an essential marker for conductive ink printing process. Especially, heat stability is important, since conductive ink should be processable (annealing, curing) at temperatures below $150^{\circ}C$. This study was application of RFID on textiles. The textile pre-treatment processes should be carried out to use RFID antenna on textiles.

Ink-Jet Printing of Conductive Silver Inks for Flexible Display Devices

  • Kim, Dong-Jo;Park, Jung-Ho;Jeong, Sun-Ho;Moon, Joo-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1491-1494
    • /
    • 2005
  • We have studied ink-jet printing method for patterning conductive line on flexible plastic substrates. Synthesized silver nano-particles of ${\sim}$20nm were used for the conductive ink and the printed patterns exhibit a smooth line whose linewidth is below 100 ${\mu}m$. This ink-jet printing technique can be applied to flexible displays and electronics.

  • PDF