• Title/Summary/Keyword: conductive line

Search Result 139, Processing Time 0.027 seconds

Commercialization & Process Optimization of Protective Film on Nano Silver Transparent Conductive Substrate by Means of Large Scale Roll-to-Roll Coating and Experimental Design (나노실버 투명전도소재 보호필름의 개발 및 공정 최적화와 실험 계획법을 이용한 검증)

  • Park, Kwang-Min;Lee, Ji-Hoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.12
    • /
    • pp.813-820
    • /
    • 2015
  • We have studied commercialization and process optimization of protective film on transparent conductive coated substrate, nano silver on flexible PET (poly ethylene terephthalate), by means of roll-to-roll micro-gravure coater. Nanosilver on flexible PET substrate is potential materials to replace ITO (indium tin oxide). Protective film is most important to maintain unique silver pattern on top of transparent PET. PSA pressure sensitive adhesives) was developed solely for nano silver on PET and protective film was successfully laminated. We have optimized all process conditions such as coating thickness, line speed and aging time & temperature via experimental design. Transparent conductive film and its protective film developed in this research are commercially available at this moment.

A Study on OLED display device's line defect test methode (OLED display device의 Line Defect 시험법에 관한 연구)

  • Choi, Young-Tae;Choi, Jai-Rip
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2009.04a
    • /
    • pp.523-529
    • /
    • 2009
  • The ACF(Anisotropic Conductive Film) is used for bonding Drive IC and OLED display device panel. If ACF bonding process is problem, a malfunction of line defect can occur. Because electric resistance increase between the panel and drive IC after a period of time, drive IC can not supply enough current to the panel. This paper is studied on a method of test for line defect.

  • PDF

Analysis of the thermal fluid flow between the gas torch and the steel plate for the application of the line heating (선상 가열을 위한 가스 토치와 강판 사이의 열유동 해석)

  • Jong-Hun Woo;Jong-Gye Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.2
    • /
    • pp.52-60
    • /
    • 2002
  • Line heating is a forming process which makes the curved surface with the residual strain created by applying heat source of high temperature to steel plate. in order to control the residual strain, it is necessary to understand not only conductive heat transfer between heat source and steel plate, but also temperature distribution of steel plate. In this paper we attempted to analyze is temperature distribution of steel plate by simplifying a line heating process to collision-effusive flux of high temperature and high velocity, and conductive heat transfer phenomenon. To analyze this, combustion in the torch is simplified to collision effusive phenomenon before analyzing turbulent heat flux. The distribution of temperature field between the torch and steel plate is computed through turbulent heat flux analysis, and the convective heat transfer coefficient between effusive flux and steel plate is calculated using approximate empirical Nusselt formula. The velocity of heat flux into steel plate is computed using the temperature distribution and convective heat transfer coefficient, and temperature field in the steel plate is obtained through conductive heat transfer analysis in which the traction is induced by velocity of heat flux. In this study, Finite Element Method is used to accomplish turbulent heat flux analysis and conductive heat transfer analysis. FEA results are compared with empirical data to verify results.

New Resonant AC Link Snubber-Assisted Three-Phase Soft-Switching PWM Inverter and Its Comparative Characteristics Evaluations

  • Yoshida, Masanobu;Hiraki, Eiji;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.239-248
    • /
    • 2003
  • This paper presents a novel prototype of three-phase voltage source type zero voltage soft-switching inverter with the auxiliary resonant snubbers suitable for high-power applications with IGBT power module packages in order to reduce their switching power losses as well as electromagnetic conductive and radiative noises. A proposed single inductor-assisted resonant AC link snubber circuit topology as one of some auxiliary resonant commutation snubbers developed previously to achieve the zero voltage soft-switching (ZVS) for the three-phase voltage source type sinewave PWM inverter operating under the instantaneous space voltage vector modulation is originally demonstrated as compared with the other types of resonant AC link snubber circuit topologies. In addition to this, its operation principle and unique features are described in this paper. Furthermore, the practical basic operating performances of the new conceptual instantaneous space voltage vector modulation resonant AC link snubber-assisted three-phase voltage source type soft-switching PWM inverter using IGBT power module packages are evaluated and discussed on the basis of switching voltage and current waveforms, output line to line voltage quality, power loss analysis, actual power conversion efficiency and electromagnetic conductive and radiative noises from an experimental point of view, comparing with those of conventional three-phase voltage source hard-switching PWM inverter using IGBT power modules.

Study and Fabrication of Transparent Electrode Film by using Thermal-Roll Imprinted Ag Mesh Pattern and Coated Conductive Polymer (열형-롤 각인으로 형성한 Ag 격자 패턴과 전도성 고분자 코팅을 이용한 투명전극 필름 제작에 관한 연구)

  • Yu, Jong-Su;Jo, Jeong-Dai;Yoon, Seong-Man;Kim, Do-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.9
    • /
    • pp.11-15
    • /
    • 2010
  • In this study, to fabricate a low-resistance and high optical transparency electrode film, the following steps were performed: the design and manufacture of electroforming stamp, the fabrication of a thermal roll-imprinted polycarbonate (PC) patterned films, the filled low-resistance Ag paste using doctor blade process on patterned PC films and spin coating by conductive polymers. As a result of PC films imprinted line width of $26.69{\pm}2\;{\mu}m$, channel length of $247.57{\pm}2\;{\mu}m$, and pattern depth of $7.54{\pm}0.2\;{\mu}m$. Ag paste to fill part of the patterned film with conductive polymer coating and then the following parameters were obtained: a sheet resistance of $11.1\;{\Omega}/sq$ optical transparency values at a wavelength of 550 nm was 80.31 %.

Research on report equipments application status for live-line works in UHV T/L (초고압 송전선로용 활선장비 활용현황 조사연구)

  • Lee, Hyeong-Gwon;Sohn, Heung-Gwan;Kim, Hyo-Jin;Kim, Dae-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2003.07e
    • /
    • pp.127-131
    • /
    • 2003
  • We have investigated about kinds of the equipment according to use. They have many kinds of equipments, namely conductive cloths, insulated gloves, conductive shoes, insulated sticks, swivel boom, fittings and insulator cradles etc. We have suggested about use of equipments, basic functions and shapes.

  • PDF

Analysis of the inductive interference on the conductor around power system (송전선로 주위의 도체에 미치는 유도장해 해석)

  • Choi, Se-Yong;Nah, Wan-Soo;Choi, Myung-Jun;Lee, Se-Hee;Kim, Dong-Hun;Park, Il-Han;Shin, Myung-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.1034-1037
    • /
    • 1999
  • In this paper, we analyze the inductive interference in conductive material around power transmission line. To compute induced eddy currents as well as electromagnetic fields, finite element method(FEM) is used for numerical calculation. The characteristics of conductive material such as gas pipeline, overhead guide wires, conducting earth and so on are taken account of FEM analysis. This research also shows that mitigation wire reduces amount of eddy current in buried gas pipe line.

  • PDF

Conductive Properties of Thermoplastic Carbon Fiber Reinforced Plastics Highly Filled with Carbon Fiber Fabrics and Conductive Carbon Fillers (탄소섬유 직물 및 전도성 탄소 필러가 고충진 된 열가소성 탄소섬유강화플라스틱의 전도 특성)

  • Kim, Seong Yun;Noh, Ye Ji;Jang, Ji-un;Choi, Seong Kyu
    • Composites Research
    • /
    • v.34 no.5
    • /
    • pp.290-295
    • /
    • 2021
  • The application of lightweight structural composites to automobiles as a solution in line with global fuel economy regulations to curb global warming is recognized as a megatrend. This study was conducted to provide a technical approach that can respond to the issue of replacing parts that require conductive properties to maximize the application of thermoplastic carbon fiber reinforced plastics (CFRPs), which are advantageous in terms of repair, disposal and recycling. By utilizing the properties of the low-viscosity polymerizable oligomer matrix, it was possible to prepare a thermoplastic CFRP exhibiting excellent impregnation properties while uniformly mixing the conductive filler. Various carbon-based conductive fillers such as carbon black, carbon nanotubes, graphene nanoplatelets, graphite, and pitch-based carbon fibers were filled up to the maximum content, and electrical and thermal conductive properties of the fabricated composites were compared and studied. It was confirmed that the maximum incorporation of filler was the most important factor to control the conductive properties of the composites rather than the type or shape of the conductive carbon filler. Experimental results were observed in which it might be advantageous to apply a one-dimensional conductive carbon filler to improve electrical conductivity, whereas it might be advantageous to apply a two-dimensional conductive carbon filler to improve thermal conductivity. The results of this study can provide potential insight into the optimization of structural design for controlling the conductive properties of thermoplastic CFRPs.

Investigation on Contact Resistance of Amorphous Indium Gallium Zinc Oxide Thin Film Transistors with Various Electrodes by Transmission Line Method

  • Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.3
    • /
    • pp.139-141
    • /
    • 2015
  • Contact resistance of interface between the channel layers and various S/D electrodes was investigated by transmission line method. Different electrodes such as Ti/Au, a-IZO, and multilayer of a-IGZO/Ag/a-IGZO were compared in terms of contact resistance, using the transmission line model. The a-IGZO TFTs with a-IGZO/Ag/a-IGZO of S/D electrodes showed good performance and low contact resistance due to the homo-junction with channel layer.

A Study on the Improvement of the Dye-sensitized Solar Cell by the Fiber Laser Transparent Conductive Electrode Scribing Technology (파이버 레이저 투명 전극 식각을 통한 염료감응형 태양전지 효율 상승 연구)

  • Son, Min-Kyu;Seo, Hyun-Woong;Shin, In-Young;Kim, Jin-Kyoung;Choi, Jin-Ho;Choi, Seok-Won;Kim, Hee-Je
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2218-2224
    • /
    • 2010
  • Dye-sensitized solar cell (DSC) is a promising alternative solar cell to the conventional silicon solar cell due to several advantages. Development of large scale module is necessary to commercialize the DSC in the near future. A scribing technology of the transparent conductive oxide (TCO) is one of the important technologies on the fabrication of DSC module. A quality of the scribed line on the TCO has a decisive effect on the efficiency of DSC module. Among several scribing technologies, the fiber laser is a suitable for scribing the TCO more precisely and accurately because of their own characteristics. In this study, we try to improve the quality of the TCO scribed line by using the fiber laser. Consequently, the operating parameter of fiber laser is optimized to get the TCO scribed line with good quality. And the fiber laser scribing technology of the TCO is applied to the fabrication of the DSC with optimal operating parameter, operating current 3900mA. As a result, the current density and fill factor are improved and the total efficiency is increased because the internal resistances of DSC such as TCO sheet resistance and the resistance concerned to the electron movement in the $TiO_2$ are reduced. This is analyzed by the electrochemistry impedance spectroscopy (EIS) and the equivalent circuit model of the DSC.