• Title/Summary/Keyword: conditioning simulation

Search Result 999, Processing Time 0.026 seconds

Numerical Simulation and Analysis for Optimum Design of a Thermoacoustic Refrigerator (공명관식 열음향 냉동기의 최적설계를 위한 수치모사 및 설계인자 분석)

  • Kim, D.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.2
    • /
    • pp.329-340
    • /
    • 1995
  • Basic refrigeration effect and efficiency of a thermoacoustic refrigerator is studied. The refrigerator model for numerical simulation is composed of half wavelength resonator and appropriate stack of plate. Theoretical model for thermoacoustic refrigeration suggested by Swift et. al is adapted for numerical calculation. The model contains arbitrary viscosity effect of the gas filled in the resonator. The wave equation is integrated by using 4-th order Runge-Kutta algorithm to give pressure distribution along the stack of plate. Heat flux and COP are also calculated based on the energy flux equation. By analyzing the numerical simulation results, optimum values of design parameters for thermoacoustic refrigerator are obtained.

  • PDF

Cycle Simulation of a Desiccant Cooling System with a Regenerative Evaporative Cooler (재생형 증발식 냉각기를 이용한 제습 냉방시스템의 성능해석)

  • 이재완;이대영;강병하
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.6
    • /
    • pp.566-573
    • /
    • 2004
  • Comparison of the cooling performance is provided between the desiccant cool-ing systems incorporating a direct evaporative cooler and a regenerative evaporative cooler, respectively. Cycle simulation is conducted, and the cooling capacity and COP are evaluated at various temperature and humidity conditions. The COP of the system with a regenerative evaporative cooler and the regeneration temperature of 6$0^{\circ}C$ is evaluated 0.65 at the outdoor air condition of 35$^{\circ}C$ and 40% RH. This value is found about 3.4 times larger than that of the system with a direct evaporative cooler. Furthermore, incorporating a regenerative evaporative cooler eliminates the need for deep dehumidification in a desiccant dehumidifier that is necessary to achieve low air temperature in the system with a direct evaporative cooler. Subsequently, the regenerative evaporative cooler enables the use of low temperature heat source to regenerate the dehumidifier permitting the desiccant cooling system more beneficial compared with other thermal driven air conditioners.

Verification Experiment and Analysis for 6 kW Solar Water Heating System(Part 2 : Modelling and Simulation) (6 kW급 태양열 온수급탕 시스템의 실증실험 및 분석(제2보 모델링 및 시뮬레이션))

  • 최봉수;김진홍;강용태;홍희기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.6
    • /
    • pp.556-565
    • /
    • 2004
  • We have experimented an actual solar water heating system acquiring real data for one year period. On the basis of the operation data, it is necessary to predict the system performance such as collector efficiency and solar fraction, and to analyze the economical efficiency for system optimal design. To estimate the performance of actual systems through simulation, valid modelling for components consisting of the system should be accompanied. The present study is focused on the modelling for load patterns and operating control conditions. We proposed two load models: concentration model which gathers real loads as a meaningful group and distribution model which disperses real loads with time. If grouping of the load distribution is suitable, the predicted values by the concentration model approaches to those by the distribution model close to actual load pattern apparently. As a result, both of them are in good agreement with those by experiment.

Artificial Lighting Energy Saving by Daylighting in Office Building (사무소건물에서 자연채광에 의한 조명에너지 절약의 평가)

  • 임병찬
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.6
    • /
    • pp.608-613
    • /
    • 2004
  • Artificial lighting accounts for a significant portion of the energy use in office buildings. Therefore, daylighting is considered one of the fundamental design features of energy-efficient buildings. However, complex daylighting simulation tools are not suitable for most designers to help in the decision-making process. This paper provides the results of a simulation analysis to determine the potential energy savings of daylighting effects reducing electrical energy consumption for office building. A whole building simulation tool is used to determine the effects of daylighting on lighting electricity use as well as total electricity use for typical office buildings. It was determined that daylighting does not provide significant additional lighting energy savings when glass transmittance is increased over 0.7 A simplified method is developed based on the analysis results to estimate the annual electrical energy savings attributed to daylighting.

A Study on Autocascade Refrigeration System Using Carbon Dioxide and R134a Mixture

  • Park, Soo-Nam;Kim, Min-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.1
    • /
    • pp.39-49
    • /
    • 2001
  • Investigation of the performance of an autocascade refrigeration system using the refrigerant mixtures of R744 (carbon dioxide) and R134a (1,1,1,2-tetrafluoroethane) has been carried out by simulation and experiment. Cycle simulation using a constant UA model in heat exchangers has been performed for R744/134a mixtures of the compositions ranging from 10/90 to 30/70 by weight. Variations of mass flow rate of refrigerant, compressor work, refrigeration capacity and COP with respect to mass fraction of R744/134a mixture were presented. Performance test has been executed in the autocascade refrigeration system by varying secondary fluid temperatures at evaporator and condenser inlets. Experimental results match quite well with those obtained from the simulation.

  • PDF

A Study on the Improvement of Energy Performance in School Buildings (학교건물의 에너지 성능개선에 관한 연구)

  • 박진철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.1
    • /
    • pp.54-61
    • /
    • 2004
  • The purpose of this study is to improve of energy performance in school buildings. Many building renovations have mainly focused on commercial buildings and houses, but school buildings have no attention in this field although there are many buildings that show degraded energy performance and there are many old fashioned buildings which need renovation. This study was carried out through the survey, field study, energy simulation and life cycle cost analysis. The results of this study can be summarized as follows: In model building, large amount of heat were lost at the building envelope, such as non-insulated skins, window-sills and window-frame joints. According to the simulation result, about 15% of heating energy is saved by the insulating works compared to pre-renovation condition. Also, LCC analysis revealed to be more effective to select a exteria wall insulation such as a dryvit system.

Simulation for High Efficient Heat Pump System using Seawater Heat Source and Exhaust Energy (해수 열원 및 폐열 이용 고성능 열펌프 시스템 모사)

  • 최광일;오종택;오후규
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.1
    • /
    • pp.59-66
    • /
    • 2003
  • The purpose of this study is to analyze the characteristics (COP) of the heat pump system for various operating conditions with the use of seawater heat source and exhaust energy. To accomplish the goal, first of all, the computer simulation for heat pump system is carried out. The heat pump system model is made of a waste heat recovery system and a vapor compression refrigeration system, and the working fluid is R-22. The model calculated the change of COP with the variation of temperature and flow rate. The COP and the plate heat exchanger (PHE) area of the heat pump system are considered moderately high in the condensation temperature of $25^{\circ}^C$ and the evaporation temperature of $2^{\circ}^C$ in indoor culture system. The simulation results will be used effectively for the design and the performance prediction of heat pump system using unused energy in a land base aquaculture system.

A Study of Laminated Evaporator Performance Characteristics through Numerical Analysis (전산해석을 이용한 적층형 증발기 성능특성 연구)

  • 시종민;한창섭;김재훈;우승길
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.3
    • /
    • pp.210-219
    • /
    • 2003
  • A laminated evaporator performance simulation software has been developed and the performance characteristics have been examined with variation of important design parameters, number of plate ( $P_{N}$), plate inner height ( $P_{h}$), Plate thickness ( $p_{t}$) and plate wetted Perimeter ( $P_{wl}$ ). To confirm the program, performance experiment was carried out for two different evaporators. The simulation results matched with experiments within $\pm$10%. Through the parametric studies, $P_{N}$ was shown to be most influential. The $P_{N}$, $P_{h}$ and $P_{wl}$ had a maximum cooling capacity point in the calculation range. In case of $P_{t}$, the smaller was the better.ter.etter.ter.

Standard Weather Data of Seoul for Energy Simulation (에너지 시뮬레이션을 위한 서울의 표준 외기 온도 및 습도 데이터)

  • 김성실;김영일
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.11
    • /
    • pp.897-906
    • /
    • 2002
  • Standard temperature and absolute humidity weather correlations of Seoul for dynamic energy simulation have been developed regressing the measured data compiled by the Korea Meteorological Adminstration during a 10-year period from 1991 to 2000. The mathematical equations can generate the daily and yearly variations of outdoor weather data with consistency unlike the measured data which may show abnormal behavior, Considering that each hour of the day follows a certain yearly pattern, the correlations are developed for each hour. The derived 24 simple mathematical equations can be used for estimating outdoor temperature and humidity conditions for any arbitrary time of the year.

Verification Experiment and Simulation of Cooling Load for a Test Space with Forced Ventilation (시험공간에 강제환기를 고려한 냉방부하의 실증실험 및 시뮬레이션)

  • Kim, Dong-Hyeok;Yoo, Ho-Seon;Hong, Hi-Ki
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.217-222
    • /
    • 2005
  • Building energy consumption according to the ventilation has been considered to be an important subject. The purpose of this study is to investigate the cooling loads in a test space with a forced ventilating system. In the test space, on/off controlled air-conditioning and forced ventilating facility were operated between 8:30 to 21:00 during 4 days and some important data like temperatures and energy consumption were measured to obtain actual cooling loads. The simulation was carried out in a mode of temperature level control using a TRNSYS 15.3 with a precisely measured air change amount and performance data of air-conditioner. Cooling loads including sensible and latent were compared between by experiment and by simulation. Both of cooling loads associated with ventilation show a close agreement within an engineering tolerance.

  • PDF