• Title/Summary/Keyword: conditional probability distribution

Search Result 72, Processing Time 0.016 seconds

A High Order Product Approximation Method based on the Minimization of Upper Bound of a Bayes Error Rate and Its Application to the Combination of Numeral Recognizers (베이스 에러율의 상위 경계 최소화에 기반한 고차 곱 근사 방법과 숫자 인식기 결합에의 적용)

  • Kang, Hee-Joong
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.9
    • /
    • pp.681-687
    • /
    • 2001
  • In order to raise a class discrimination power by combining multiple classifiers under the Bayesian decision theory, the upper bound of a Bayes error rate bounded by the conditional entropy of a class variable and decision variables obtained from training data samples should be minimized. Wang and Wong proposed a tree dependence first-order approximation scheme of a high order probability distribution composed of the class and multiple feature pattern variables for minimizing the upper bound of the Bayes error rate. This paper presents an extended high order product approximation scheme dealing with higher order dependency more than the first-order tree dependence, based on the minimization of the upper bound of the Bayes error rate. Multiple recognizers for unconstrained handwritten numerals from CENPARMI were combined by the proposed approximation scheme using the Bayesian formalism, and the high recognition rates were obtained by them.

  • PDF

Comparative analysis of the wind characteristics of three landfall typhoons based on stationary and nonstationary wind models

  • Quan, Yong;Fu, Guo Qiang;Huang, Zi Feng;Gu, Ming
    • Wind and Structures
    • /
    • v.31 no.3
    • /
    • pp.269-285
    • /
    • 2020
  • The statistical characteristics of typhoon wind speed records tend to have a considerable time-varying trend; thus, the stationary wind model may not be appropriate to estimate the wind characteristics of typhoon events. Several nonstationary wind speed models have been proposed by pioneers to characterize wind characteristics more accurately, but comparative studies on the applicability of the different wind models are still lacking. In this study, three landfall typhoons, Ampil, Jongdari, and Rumbia, recorded by ultrasonic anemometers atop the Shanghai World Financial Center (SWFC), are used for the comparative analysis of stationary and nonstationary wind characteristics. The time-varying mean is extracted with the discrete wavelet transform (DWT) method, and the time-varying standard deviation is calculated by the autoregressive moving average generalized autoregressive conditional heteroscedasticity (ARMA-GARCH) model. After extracting the time-varying trend, the longitudinal wind characteristics, e.g., the probability distribution, power spectral density (PSD), turbulence integral scale, turbulence intensity, gust factor, and peak factor, are comparatively analyzed based on the stationary wind speed model, time-varying mean wind speed model and time-varying standard deviation wind speed model. The comparative analysis of the different wind models emphasizes the significance of the nonstationary considerations in typhoon events. The time-varying standard deviation model can better identify the similarities among the different typhoons and appropriately describe the nonstationary wind characteristics of the typhoons.