• 제목/요약/키워드: conditional merging

Search Result 29, Processing Time 0.027 seconds

Assessment and merging technique for GPM satellite precipitation product using ground based measurement (GPM 위성 강우자료의 검증과 지상관측 자료를 통한 강우 보정 기법)

  • Baik, Jongjin;Park, Jongmin;Kim, Kiyoung;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.2
    • /
    • pp.131-140
    • /
    • 2018
  • Precipitation is a key variable to enhance the understanding of water cycle system and secure and manage the water resources efficiently. In this study, we evaluated the feasibility of GPM precipitation datasets through comparison with the 92 ASOS sites in South Korea during 2015. Additionally, three merging techniques (i.e., Geographical Differential Analysis, Geographical Ratio Analysis, Conditional Merging) were applied to improve accuracy of precipitation by fusing the advantages from point and satellite-based datasets. The results of this study are as follows. 1) GPM dataset indicated slightly overestimation with compared ASOS dataset, especially high uncertainties in summer season. 2) Validation of three merging techniques through jackniffe cross-validation showed that uncertainty were decreased as the spatial resolution increased. Especially, conditional merging showed the best performance among three methods.

Accurate Estimation of Settlement Profile Behind Excavation Using Conditional Merging Technique (조건부 합성 기법을 이용한 굴착 배면 침하량 분포의 정밀 산정)

  • Kim, Taesik;Jung, Young-Hoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.8
    • /
    • pp.39-44
    • /
    • 2016
  • Ground deformation around construction site in urban area where typically adjacent structures are located needs to be strictly controlled. Accordingly, it is very important to precisely monitor the ground deformation. Settlement beacon is typically employed to measure the ground deformation, but meanwhile the rapid development in electronic technology enables 3D image scanner to become available for measuring the ground deformation profile in usual construction sites. With respect to the profile measurement, the 3D scanner has an advantage, whereas its accuracy is somewhat limited because it does not measure the displacement directly. In this paper, we developed a conditional merging technique to combine the ground displacement measured from settlement beacon and the profile measured by the 3D scanner. Synthetic ground deformation profile was generated to validate the proposed technique. It is found that the ground deformation measurement error can be reduced significantly via the conditional merging technique.

Evaluation of GPM satellite and S-band radar rain data for flood simulation using conditional merging method and KIMSTORM2 distributed model (조건부합성 기법과 KIMSTORM2 분포형 수문모형을 이용한 GPM 위성 강우자료 및 Radar 강우자료의 홍수모의 평가)

  • Kim, Se Hoon;Jung, Chung Gil;Jang, Won Jin;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.1
    • /
    • pp.21-33
    • /
    • 2019
  • This study performed to simulate the watershed storm runoff using data of S-band dual-polarization radar rain, GPM (Global Precipitation Mission) satellite rain, and observed rainfall at 21 ground stations operated by KMA (Korea Meteorological Administration) respectively. For the 3 water level gauge stations (Sancheong, Changchon, and Namgang) of NamgangDam watershed ($2,293km^2$), the KIMSTORM2 (KIneMatic wave STOrm Runoff Model2) was applied and calibrated with parameters of initial soil moisture contents, Manning's roughness of overland and stream to the event of typhoon CHABA (82 mm in watershed aveprage) in $5^{th}$ October 2016. The radar and GPM data was corrected with CM (Conditional Merging) method such as CM-corrected Radar and CM-corrected GPM. The CM has been used for accurate rainfall estimation in water resources and meteorological field and the method combined measured ground rainfall and spatial data such as radar and satellite images by the kriging interpolation technique. For the CM-corrected Radar and CM-corrected GPM data application, the determination coefficient ($R^2$) was 0.96 respectively. The Nash-Sutcliffe efficiency (NSE) was 0.96 and the Volume Conservation Index (VCI) was 1.03 respectively. The CM-corrected data of Radar and GPM showed good results for the CHABA peak runoff and runoff volume simulation and improved all of $R^2$, NSE, and VCI comparing with the original data application. Thus, we need to use and apply the radar and satellite data to monitor the flood within the watershed.

Assessment of flood runoff using radar rainfall and distributed model (레이더 강우 자료와 분포형 모형을 이용한 홍수 유출량 산정)

  • Kim, Byung-Sik;Hong, Jun-Bum;Kim, Won;Yoon, Seok-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1783-1787
    • /
    • 2007
  • In this paper we applied radar rainfall for assessment that radar can be used for flood forecasting. The radar data observed at Imjin-River radar site was adjusted using conditional merging method to estimate simulated runoff in Anseon-cheon basin. Also we use two dimensional physical and grid based model call $Vflo^{TM}$. As a result we could find simulated hydrologic curve shows good fitting with observed hydrologic curve even parameters of the model were not calibrated. If we calibrate the parameters, we can expect better hydrologic curve. And radar rainfall can be used for water resources fields and flood forecasting in Korea.

  • PDF

The Applicability of KIMSTORM2 for Flood Simulation Using Conditional Merging Method and GPM Satellite Rainfall Data (조건부 합성기법과 GPM 위성강우자료를 이용한 분포형 강우유출모형 KIMSTORM2의 홍수모의 적용성 평가)

  • Kim, Se Hoon;Jung, Chung Gil;Jang, Won Jin;Kim, Seong Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.111-111
    • /
    • 2018
  • 본 연구의 목적은 조건부 합성 기법(Conditional Merging, CM) 기법을 활용하여 GPM(Global Precipitation Measurement) 위성 자료를 보정하고, 이를 격자기반 분포형 강우-유출 모형(KIneMatic wave STOrm Runoff Model2, KIMSTORM2)에 적용하여 보정된 자료의 효율성을 검토하는데 있다. 모형의 유출 해석은 남강댐 유역($2,293km^2$)을 대상으로 하였으며, 2016년 10월에 발생한 태풍 차바에 대하여 GPM 자료와 CM 기법을 적용한 GPM 자료를 각각 활용하여 결과를 비교하였다. 이 때, 강우자료의 보정은 유역 내 위치한 21개 지점의 지상강우자료를 활용하였으며, 각각의 위성강우자료에 유출 검보정은 남강댐 유역 내 3개의 수위관측 지점(산청, 창촌, 남강댐)을 대상으로 실시하였다. 유출 결과는 결정계수(Coefficient of determination, $R^2$), 모형 효율성 계수(Nash-Sutcliffe efficiency, NSE) 및 유출용적지수(Volume conservation index, VCI)를 이용하여 산정하였다. 지상강우자료와 CM 기법을 통해 보정한 강우자료는 대기의 많은 영향을 받는 위성자료의 특성을 보정하여 공간유출 및 첨두유출을 합리적으로 재현할 수 있을 것으로 예상된다.

  • PDF

Spatial merging of satellite based soil moisture and in-situ soil moisture using conditional merging technique (조건부 합성방법을 이용한 위성관측 토양수분과 지상관측 토양수분의 합성)

  • Lee, Jaehyeon;Choi, Minha;Kim, Dongkyun
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.3
    • /
    • pp.263-273
    • /
    • 2016
  • This study applied conditional merging (CM) spatial interpolation technique to obtain the satellite and in-situ composite soil moisture data. For the analysis, 24 gages of hourly in-situ data sets from the Rural Development Administration (RDA) of Korea and the satellite soil moisture data retrieved from Advanced Microwave Scanning Radiometer-Earth observing system (AMSR-E) were used. In order to verify the performance of the CM method, leave-one-out cross validation was used. The cross validation result was spatially interpolated to figure out spatial correlation of the CM method. The results derived from this study are as follow: (1) The CM method produced better soil moisture map over Korean Peninsula than AMSR-E did for the over 100 days out of total 113 days considered for the analysis. (2) The method of CM showed high correlation with gage density and better performance on the western side of Korean peninsula due to high spatial gauge density. (3) The performance of CM is not affected by the non-rainy season unlike to AMSR-E data is. Overall, the result of this study indicates that the CM method can be applied for predicting soil moisture at ungaged locations.

Assessment of merging weather radar precipitation data and ground precipitation data according to various interpolation method (보간법에 따른 기상레이더 강수자료와 지상 강수자료의 합성기법 평가)

  • Kim, Tae-Jeong;Lee, Dong-Ryul;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.12
    • /
    • pp.849-862
    • /
    • 2017
  • The increased frequency of meteorological disasters has been observed due to increased extreme events such as heavy rainfalls and flash floods. Numerous studies using high-resolution weather radar rainfall data have been carried out on the hydrological effects. In this study, a conditional merging technique is employed, which makes use of geostatistical methods to extract the optimal information from the observed data. In this context, three different techniques such as kriging, inverse distance weighting and spline interpolation methods are applied to conditionally merge radar and ground rainfall data. The results show that the estimated rainfall not only reproduce the spatial pattern of sub-hourly rainfall with a relatively small error, but also provide reliable temporal estimates of radar rainfall. The proposed modeling framework provides feasibility of using conditionally merged rainfall estimation at high spatio-temporal resolution in ungauged areas.

Metaphor: Interface between the Cognitive View and the Truth-conditional View

  • Yoon, Young-Eun
    • Language and Information
    • /
    • v.8 no.1
    • /
    • pp.163-182
    • /
    • 2004
  • Since metaphor was proposed to be a matter of thought instead of language over two decades ago, the research in this area has made most of its progress by the cognitivists. For the cognitivists represented by Lakoff, metaphor is not a mere poetic or rhetoric device, but is central to our everyday language. Furthermore, according to them, we categorize the world and break it into concepts mainly through metaphors, and truth conditions simply cannot account for metaphor. However, this cognitivists' view has been severely counterattacked by the truth-conditional semanticists. Their main criticism is that the cognitivists do not provide a way to go from our internal representations to the outside world. It is also criticized that the cognitive theory of metaphor as cross-conceptual domain mappings is too broad and general, and that they do not explain why a particular metaphorical expression should be subsumed under one mapping rather than another mapping, i.e., their schemes and structural relations are not predictive. In this context, the purpose of this paper is to propose a model for metaphor interpretation that combines the virtues of the two opposite views of metaphor. Truth-conditional semantics cannot ignore cognitive aspects of language, so-called states of affairs or mental representations, while cognitive theories cannot neglect vigorous representation of meaning with objective reality. This paper will try to present a preliminary outline of this combining model.

  • PDF

Quantitative Precipitation Estimation using High Density Rain Gauge Network in Seoul Area (고밀도 지상강우관측망을 활용한 서울지역 정량적 실황강우장 산정)

  • Yoon, Seong-sim;Lee, Byongju;Choi, Youngjean
    • Atmosphere
    • /
    • v.25 no.2
    • /
    • pp.283-294
    • /
    • 2015
  • For urban flash flood simulation, we need the higher resolution radar rainfall than radar rainfall of KMA, which has 10 min time and 1km spatial resolution, because the area of subbasins is almost below $1km^2$. Moreover, we have to secure the high quantitative accuracy for considering the urban hydrological model that is sensitive to rainfall input. In this study, we developed the quantitative precipitation estimation (QPE), which has 250 m spatial resolution and high accuracy using KMA AWS and SK Planet stations with Mt. Gwangdeok radar data in Seoul area. As the results, the rainfall field using KMA AWS (QPE1) is showed high smoothing effect and the rainfall field using Mt. Gwangdeok radar is lower estimated than other rainfall fields. The rainfall field using KMA AWS and SK Planet (QPE2) and conditional merged rainfall field (QPE4) has high quantitative accuracy. In addition, they have small smoothed area and well displayed the spatial variation of rainfall distribution. In particular, the quantitative accuracy of QPE4 is slightly less than QPE2, but it has been simulated well the non-homogeneity of the spatial distribution of rainfall.

Estimation of South Korea Spatial Soil Moisture using TensorFlow with Terra MODIS and GPM Satellite Data (Tensorflow와 Terra MODIS, GPM 위성 자료를 활용한 우리나라 토양수분 산정 연구)

  • Jang, Won Jin;Lee, Young Gwan;Kim, Seong Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.140-140
    • /
    • 2019
  • 본 연구에서는 Terra MODIS 위성자료와 Tensorflow를 활용해 1 km 공간 해상도의 토양수분을 산정하는 알고리즘을 개발하고, 국내 관측 자료를 활용해 검증하고자 한다. 토양수분 모의를 위한 입력 자료는 Terra MODIS NDVI(Normalized Difference Vegetation Index)와 LST(Land Surface Temperature), GPM(Global Precipitation Measurement) 강우 자료를 구축하고, 농촌진흥청에서 제공하는 1:25,000 정밀토양도를 기반으로 모의하였다. 여기서, LST와 GPM의 자료는 기상청의 종관기상관측지점의 LST, 강우 자료와 조건부합성(Conditional Merging, CM) 기법을 적용해 결측치를 보간하였고, 모든 위성 자료의 공간해상도를 1 km로 resampling하여 활용하였다. 토양수분 산정 기술은 인공 신경망(Artificial Neural Network) 모형의 딥 러닝(Deep Learning)을 적용, 기계 학습기반의 패턴학습을 사용하였다. 패턴학습에는 Python 라이브러리인 TensorFlow를 사용하였고 학습 자료로는 농촌진흥청 농업기상정보서비스에서 101개 지점의 토양수분 자료(2014 ~ 2016년)를 활용하고, 모의 결과는 2017 ~ 2018년까지의 자료로 검증하고자 한다.

  • PDF