• Title/Summary/Keyword: condition grade curve

Search Result 15, Processing Time 0.026 seconds

Theoretical Review on the Vertical Geometric Design Standards for High-speed Roadway (초고속 주행환경에서의 종단경사 설계기준에 관한 기초연구)

  • Song, Mintae;Kang, Hoguen;Kim, Heungrae;Lee, Euijoon;Shin, Joonsoo;Kim, Jongwon
    • International Journal of Highway Engineering
    • /
    • v.15 no.4
    • /
    • pp.177-186
    • /
    • 2013
  • PURPOSES: The purpose of this study theoretically reviews vertical grade deriving process in super high speed environment and compares overseas design criteria with Domestic Standardization also draws suitable vertical grade design criteria of high standard for Domestic Circumstances in Korea. METHODS : By researching domestic vehicle registration status, calculating typical vehicle, using Vissim which is traffic simulation program, Speed-distance curve of the vehicle is derived under each design speed condition. Through Speed-distance curve, estimating critical length of grade and considering critical length of grade, maximum longitudinal incline is proposed. RESULTS : The result of domestic vehicle registration status, the typical vehicle for deriving vertical grade is calculated based on gravity horsepower ratio 200 lb/hp. For calculating critical length of grade, according to change speed of uphill entry, speed-distance curve is derived by using Vissim. Critical length of grade is calculated based on design speed 20 km/h criteria which is point of retardation. Estimated critical length of grade is 808 m and based on this result, maximum longitudinal incline was confirmed in the design speed between 130km/h to 140km/h. CONCLUSIONS: The case of the typical vehicle(truck) which is gravity horsepower ratio 200 lb/hp, maximum longitudinal incline 2% is desirable at the super high speed environment in the design speed between 130km/h to 140km/h.

A Method of Compounding Application of Longitudinal Grade and Superelevation on Left Curved Section in Arterial for Preventing Hydroplaning (간선도로 좌곡선부 전후구간 수막현상 방지를 위한 종·횡단경사 조합 적용방안)

  • Jung, Ji Hwan;Oh, Heung Un
    • International Journal of Highway Engineering
    • /
    • v.17 no.1
    • /
    • pp.105-118
    • /
    • 2015
  • PURPOSES : This study aims to evaluate the road safety of the super-elevation transition section of a left turn curve and suggest the minimum longitudinal grade of a super-elevation transition section to be used before and after a left curved section. METHODS : We evaluated the road condition by means of the safety-criterion-evaluation method involving side friction factors, and then solve the problem by introducing the minimum longitudinal grade criterion based on conditions described in the hydraulics literature. RESULTS : It was calculated that when a road satisfies hydroplaning conditions, the difference between side friction assumed and side friction demanded is less than -0.04. In this case, the safety criterion for the condition is unsatisfied. Conversely, when a road is in a normal state under either wet or dry conditions, it was calculated that the difference between side friction assumed and side friction demanded is more than 0.01. Thus, the safety criterion for this condition is found to be satisfied. After adjusting the minimum longitudinal grade applied to a super-elevation transition section, the hydroplaning condition can be eliminated and the safety criterion can be met for all sections. CONCLUSIONS : It is suggested that a minimum longitudinal grade should be provided on super-elevation transition sections in order to prevent hydroplaning.

Optimal Life-Cycle Cost Design of Steel Box Girders (강박스 거더의 생애주기비용 최적설계)

  • Shin Yung-Seok;Park Jang-Ho;Lee Hyun-Sub;Ahn Ye-Jun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.4 s.70
    • /
    • pp.445-452
    • /
    • 2005
  • This paper presents a design method to minimize Life Cycle Cost (LCC) of steel box girders. The LCC considered in this paper includes initial cost, expected life-cycle maintenance cost and repair cost. A load carrying capacity curve is derived from a condition grade curve of steel girders and load tarrying capacity that is measured in safety diagnostic test. And then, optimal design of steel box girders is performed on the basis of load carrying capacity curve. In this paper time and number of times for repair of steel girders are determined based on the calculated load carrying capacity curve. Also, annual costs considering real discount rate are compared and analyzed in various cases. It is concluded that the optimal design of steel box gilders considering LCC by the presented method will lead to more economical and safer girders than conventional design.

A Study on TPS for Power Simulation in AC Electrified Railway (교류급전시뮬레이터용 TPS에 관한 연구)

  • Cho, Rae-Hyuck;Oh, Kwang-Hae;Lee, Sang-Joong
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.278-282
    • /
    • 2003
  • This paper presents TPS(Train Performance Simulation) which identified the condition of train operationing in short time. Using the program, the location of train, maximum current, metering power and regenerating of train, could be identified. This is an important part for Power Simulation. It is supposed that the grade, the curve, the limit speed and the current speed be constant within the time step in the conventional papers. In addition, the errors of the grade and the curve in each station interval are neglected. This paper will introduce improvement method the problem of TPS.

  • PDF

Optimal Design of Steel Box Girders Considering LCC (LCC를 고려한 강박스 거더의 최적설계)

  • 안예준;이현섭;신영석;박장호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.339-346
    • /
    • 2004
  • This paper presents a method to minimize Life-Cycle Cost(LCC) of steel box girders. The LCC function considered in this paper includes initial cost, expected life-cycle maintenance cost and repair cost. A resistance force curve is derived from a condition grade curve of steel girders and optimal design of steel box girders is performed on the basis of derived resistance force curve. Also, in this paper annual costs of various case in LCC are compared and analyzed. It is concluded that the optimal design of steel box girders considering LCC by a presented method will lead to more economical and safer girders than conventional design.

  • PDF

Dynamic Ductile Fracture Analysis of Natural Gas Pipelines on the Basis of Material Grade and Charpy V-Notch Impact Energy (가스배관의 재질등급 및 충격에너지에 따른 연속연성파괴 거동분석)

  • Jeong, Hyo-Tae;Choe, Byung-Hak;Lee, Young-Jin;Lee, Jeong-Hwa;Hong, Key-Yong;Baek, Jong-Hyeon;Kim, Woo-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.5
    • /
    • pp.35-40
    • /
    • 2012
  • To analyze the macroscopic fracture behavior as functions of the gas pipeline grade and the working environment, following analyses have been accomplished. Computer analysis of changes in fracture behaviors according to the working conditions of pipelines and Analysis of dynamic ductile fracture behaviors using the Battelle Two Curve Method. Recently, an economic and reliable pipe materials with improved performance has been needed for the severe pipeline working condition and new transporting materials. As the grade of pipe materials became higher, the possibility of dynamic ductile fracture could be increased. Therefore, the understanding of the technology to control and arrest the dynamic ductile fracture is important.

Corrosion Behavior of Titanium for Implant in Simulated Body Fluids (인공 체액 조건에서 임플랜트용 티타늄 소재의 부식 특성)

  • 이중배;최기열
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.2
    • /
    • pp.110-118
    • /
    • 2004
  • The corrosion of pure titanium (CP- Ti Grade 2) and titanium alloy (Ti6Al4V ELI) were studied under various conditions of simulated body fluids. The static immersion test and the electrochemical test were performed in accordance with ISO 10271 : 2001. For the electrochemical test, the open circuit potential was monitored as a function of time, and the cyclic polarization curve was recorded. The corrosion resistance was evaluated from the values of corrosion potential, passivation current density, breakdown potential, and the shape of hysteresis etc. The effects of alloy type, surface condition, temperature, oxygen, and constituents in the fluids such as acid, chloride were estimated. Both specimens had extremely low dissolution rate in the static immersion test. They showed strong passivation characteristics in the electrochemical test. They maintained negligible current density throughout the wide anodic potential range. The passive layer was not broken up to 2.0 V (vs. SCE). The hysteresis and the shift of passivation potential toward the anodic direction was observed during the reversed scan. The passivation process appeared to be accelerated by oxygen in air or that dissolved in the fluids. The passivation also proceeded without oxygen by the reaction of constituents in the fluids. Acid or chloride in the fluids, specially later weakened the passive layer, and then induced higher passivation current density and less shift of passivation potential in the reversed scan. CP-Ti Grade 2 was more reactive than Ti6Al4V ELI in the fluids containing acid or chloride, but thicker layer produced on its surface provided higher corrosion resistance.

Research on the Applicability of the Load Duration Curve to Evaluate the Achievement of Target Water Quality in the Unit Watershed for a TMDL (수질오염총량 단위유역의 목표수질 달성여부 평가를 위한 부하지속곡선 적용성 연구)

  • Hwang, Ha-Sun;Park, Bae-Kyung;Kim, Yong-Seok;Park, Ki-Jung;Cheon, SeUk;Lee, Sung-Jun
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.885-895
    • /
    • 2011
  • The purpose of this study was evaluated on achievement of the Target water quality (TWQ) with Load Duration Curve (LDC) as well as materials collected through the implementation of Total Maximum Daily Load (TMDL), targeting 41 unit watersheds in the Nakdong River Basin in korea, and examines the adequacy of the LDC method to evaluate the TWQ by comparing methods through current regulations. It aims to provide basic materials for TMDL development in Korea. This determination resulted from the fact that the measured data placed on the LDC mean that they are beyond TWQ in a certain condition of water flow when actually measured load values were displayed in a form of LDC. In addition to water quality surveys, it is considered that information on the level of damage in a water body by water flow grade can be utilized as a basic material to identify compliance with the total admitted quantity, and establish rational plans to improve water quality. This information helps in the identification of the degree of damage in water quality according to water flow.

Significance of Dynamic MRI in Brain Tumors

  • Kim, Dong-Woo;Sung, Soon-Ki;Song, Young-Jin;Choi, Soon-Seop;Kim, Dae-Cheol;Choi, Young-Min;Huh, Won-Ju;Kim, Ki-Uk
    • Journal of Korean Neurosurgical Society
    • /
    • v.42 no.1
    • /
    • pp.27-34
    • /
    • 2007
  • Objective : On the magnetic resonance image (MRI) of the infiltrating brain tumor, enhancement is usually higher in malignant tumor than in benign tumor, and tumor cells can invade into the peritumoral area without definite enhancement. In various pathological conditions, the blood brain barrier (BBB) becomes changed to pathological condition, allowing various materials extravasating into the interstitial space, and degree of enhancement is depend on the pathology. Authors performed dynamic MRI on enhancing and surrounding edematous area in order to evaluate the degrees of opening of BBB, to differentiate tumor from non-tumorous condition, and to determine its relationship with the recurrence of the tumor. Methods : Dynamic MRI was performed in 25 patients. Dynamic scans were done every 15 seconds after administration of Gd-DTPA on the enhancing and surrounding area for maximum 300 seconds, and the patterns of enhancement were ana lysed. The enhancement curve with initial steep increase followed by slow decrease was defined as "N pattern", those with initial steep increase followed by additional slow increase as "T pattern", and those with initial steep increase followed by plateau as "E pattern". Histopathological findings were compared with the dynamic scan. Results : The graphs taken from enhancing area showed "T pattern" regardless of pathology. In the surrounding area, "T pattern" was noticed in the malignant tumors, but "E pattern" or "N pattern" was noted in low-grade or benign tumors and non-tumorous condition. "T pattern" in the surrounding area was related to the malignant with tumor cell infiltration and recurrence. Conclusion : The results suggest that the malignant tumor infiltration changes the condition of BBB enough to extravasate the Gd-DTPA. Enhancement pattern in the surrounding edematous area may be a useful information to differentiate the malignant glioma with the low-grade and benign tumors or other non-tumorous conditions.

Prediction of Safety Grade of Bridges Using the Classification Models of Decision Tree and Random Forest (의사결정나무 및 랜덤포레스트 분류 모델을 이용한 교량 안전등급 예측)

  • Hong, Jisu;Jeon, Se-Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.397-411
    • /
    • 2023
  • The number of deteriorated bridges with a service period of more than 30 years has been rapidly increasing in Korea. Accordingly, the importance of advanced maintenance technologies through the predictions of age-induced deterioration degree, condition, and performance of bridges is more and more noticed. The prediction method of the safety grade of bridges was proposed in this study using the classification models of the Decision Tree and the Random Forest based on machine learning. As a result of analyzing these models for the 8,850 bridges located in national roads with various evaluation indexes such as confusion matrix, balanced accuracy, recall, ROC curve, and AUC, the Random Forest largely showed better predictive performance than that of the Decision Tree. In particular, random under-sampling in the Random Forest showed higher predictive performance than that of other sampling techniques for the C and D grade bridges, with the recall of 83.4%, which need more attention to maintenance because of the significant deterioration degree. The proposed model can be usefully applied to rapidly identify the safety grade and to establish an efficient and economical maintenance plan of bridges that have not recently been inspected.