• Title/Summary/Keyword: condensation heat transfer coefficient

Search Result 149, Processing Time 0.027 seconds

Condensation Heat Transfer of R22, R407C, and R410A in Slit Fin-and-Tube Heat Exchanger

  • Jeon, Chang-Duk;Lee, Jin-Ho
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.4
    • /
    • pp.188-198
    • /
    • 2003
  • R410A and R407C are considered to be alternative refrigerants of R22 for the air-conditioners. An experimental study is carried out to investigate the effect of the change of mass flow rate on the characteristics of heat transfer and pressure drop in three row slit finned-tube heat exchanger for R407C, R410A and R22. R407C, a non-azeotropic refrigerant mixture, exhibited a quite different condensation phenomenon from those of R22 and R410A and its condensation heat transfer coefficient was much lower than that of R22 and R410A. On the other hand, the condensation heat transfer coefficient of R410A, near-azeotropic refrigerant mixture, was a little higher than that of R22. R410A also showed the lowest condensation pressure drop across the test section. For all refrigerants, the condensation heat transfer coefficient and pressure drop increase as the mass flux increases. The condensation heat transfer coefficient correlation proposed by Kedzierski shows the best agreement with the experimental data within $\pm$20%.

A study on condensation heat transfer performance in microchannel tube (마이크로 채널 관에서의 응축 열전달 성능에 관한 연구)

  • Lee, Jeong-Kun
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.22-29
    • /
    • 2019
  • This study conducted a research as to condensation heat transfer by using three types of flat micro multi-channel tubes with different processing of micro-fin and number of channels inside the pipes and different sizes of appearances. In addition, identical studies were conducted by using smoothing circular tubes with 5mm external diameter to study heat transfer coefficient. The condensation heat transfer coefficient showed an increase as the vapor quality and mass flux increased. However, each tube shows little differences compared to 400kg/m2s or identical in case the mass flux are 200kg/m2s and 100kg/m2s. The major reason for these factors is increase-decrease of heat transfer area that the flux type of refrigerant is exposed to the coolant's vapor with the effect of channel aspect ratio or micro-fin. In addition, the heat transfer coefficient was unrelated to the heat flux, and shows a rise as the saturation temperature gets lower, an effect that occurs from enhanced density. The physical factor of heat transfer coefficient increased as the channel's aspect ratio decreased. Additionally, the micro pin at the multi-channel type tube is decided as a disadvantageous factor to condensation heat enhancement factor. That is, due to the effect of aspect ratio or micro-fin, the increase-decrease of heat transfer area that the flux type of a refrigerant is exposed to the vapor is an important factor.

An Experimental Study on Condensation Heat Transfer Characteristics and Pressure Drop of Plate Heat Exchangers using the Alternative Refrigerant R410A (대체 냉매 R410A를 적용한 판형열교환기의 응축열전달 특성 및 압력강하에 대한 실험적 연구)

  • Kim, Y.H.;Han, D.H.;Lee, K.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.220-225
    • /
    • 2001
  • The plate heat exchanger is characterized. by low pressure drop and high heat transfer coefficient. The experimental study has been performed on the condensation heat transfer and pressure drop characteristics of the plate heat exchangers in this study. In the present study, a brazed type plate heat exchanger was investigated at a chevron angle of $45^{\circ},\;55^{\circ},\;and\;70^{\circ}$ with R410A. Condensation temperatures were varied from $20^{\circ}C\;and\;30^{\circ}C$, and mass flux was ranged from $13{\sim}34\;kg/m^{2}s$ with constant heat flux ($=5\;kw/m^{2}$). The heat transfer coefficient and pressure drop increased with the chevron angle. Average condensation heat transfer coefficients and pressure drops are decreased with increasing condensation tempeature.

  • PDF

IMPROVEMENTS OF CONDENSATION HEAT TRANSFER MODELS IN MARS CODE FOR LAMINAR FLOW IN PRESENCE OF NON-CONDENSABLE GAS

  • Bang, Young-Suk;Chun, Ji-Ran;Chung, Bub-Dong;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.1015-1024
    • /
    • 2009
  • The presence of a non-condensable gas can considerably reduce the level of condensation heat transfer. The non-condensable gas effect is a primary concern in some passive systems used in advanced design concepts, such as the Passive Residual Heat Removal System (PRHRS) of the System-integrated Modular Advanced ReacTor (SMART) and the Passive Containment Cooling System (PCCS) of the Simplified Boiling Water Reactor (SBWR). This study examined the capability of the Multi-dimensional Analysis of Reactor Safety (MARS) code to predict condensation heat transfer in a vertical tube containing a non-condensable gas. Five experiments were simulated to evaluate the MARS code. The results of the simulations showed that the MARS code overestimated the condensation heat transfer coefficient compared to the experimental data. In particular, in small-diameter cases, the MARS predictions showed significant differences from the measured data, and the condensation heat transfer coefficient behavior along the tube did not match the experimental data. A new method for calculating condensation heat transfer coefficient was incorporated in MARS that considers the interfacial shear stress as well as flow condition determination criterion. The predictions were improved by using the new condensation model.

An Experimental Study on Condensation Characteristics of Slit Fin-tube Heat Exchanger Using Alternative Refrigerants, R407C and R410A (대체냉매 R407C 및 R410A를 이용한 슬릿휜-관 열교환기의 응축특성에 관한 연구)

  • 전창덕;장경근;강신형;이진호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.9
    • /
    • pp.706-716
    • /
    • 2002
  • R410A and R407C are considered to be alternative refrigerants to R22 for the air-conditioners. Experimental investigation is made to study the condensation heat transfer characteristics of slit fin-tube heat exchanger using alternative refrigerants R410A and R407C. R407C, a non-azeotropic refrigerant mixture, exhibited a quite different condensation phenomenon from those of R22 and R410A and its condensation heat transfer coefficient was much lower than that of R22 and R410A. Between the R22 and R410A, the condensation heat transfer coefficient of R410A, near-azeotropic refrigerant mixture, was a little higher than that of R22. R410A also showed the lowest condensation pressure drop across the test section. For all refrigerants, the condensation heat transfer coefficient and pressure drop increase as the mass flux increases.

An Experimental Study on Condensation Heat Transfer of Low-Finned Tubes (낮은 핀관 (low-fin tube)의 응축 열전달 성능에 관한 실험적 연구)

  • Kim, N.H.;Jung, I.K.;Kim, K.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.2
    • /
    • pp.298-309
    • /
    • 1995
  • Low-fin tubes are widely used to enhance condensation heat transfer. In this study, condensation heat transfer experiment was conducted on the low-fin tube using R-11. Three different fin densities-787 fpm (fins per meter), 1102 fpm. 1378 fpm-were tested. The results show that low-fin tube enhances the condensation heat transfer considerablely. The enhancement increases as the fin density increases. It was also found that the fin shape and height have a significant effect on the condensation heat transfer coefficient. Slender or high fins showed a higher condensing heat transfer coefficient compared with fat, low fins. For the tube with 1378 fpm, however, excessive fin height decreased the condensing heat transfer coefficient. The reason may be attributed to the increasing condensate retention angle as the fin density increases. The experimental data are compared with existing prediction models. Results show that Webb's surface tension model predicted the data best (within ${\pm}20%$), which confirms that surface tension plays the major role in low-fin tube condensation.

  • PDF

The Effect of Non-condensable Gas on Direct Contact Condensation of Steam/Air Mixture

  • Lee, Hanchoon;Kim, Moohwan;Park, Suki
    • Nuclear Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.585-595
    • /
    • 2001
  • A series of experiments have been carried out to investigate the effects of non-condensable gas on the direct contact film condensation of vapor mixture under an adiabatic wall condition. The average heat transfer coefficient of the direct contact condensation was obtained at the atmospheric pressure with four main parameters ; air-mass fraction, mixture velocity, film Reynolds number, and the degree of water film subcooling having an influence on the condensation heat transfer coefficient. With the analysis of 88 experiments, a correlation of the average Nusselt number for direct contact film condensation of steam/air mixture at an adiabatic vertical wall was proposed as functions of film Reynolds number, mixture Reynolds number, air mass fraction, and Jacob number. The average heat transfer coefficient for steam/air mixture condensation decreased significantly while air mass fraction increased. The average heat transfer coefficients also decreased as the Jacob number increased, and were scarcely affected by the film Reynolds number below a mixture Reynolds number of about 245,000.

  • PDF

A Study on Heat Transfer Characteristics of Helical Coiled Tube (나선코일의 열전달 특성에 관한 연구)

  • PARK, Jong-Un;CHO, Dong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.16 no.2
    • /
    • pp.257-270
    • /
    • 2004
  • The two-phase closed thermosyphon is a heat transfer device capable of transfer large quantities of heat from a source to a sink by taking advantage of the high heat transfer rates associated with the evaporation and condensation of a working fluid within the device. A study was carried out with the performance of the heat transfer of the thermosyphon having 50, 60, 70, 80, 90 internal micro grooves in which boiling and condensation occur. A plain thermosyphon having the same inner and outer diameter as the grooved thermosyphon is also tested for comparison. Water, methanol and ethanol have been used as the working fluids. The liquid filling as the ratio of working fluid volume to total volume of thermosyphon, the inclination angle, micro grooves and operating temperature have been used as the experimental parameters. The heat flux and the boiling and the condensation heat transfer coefficient and overall heat transfer coefficient at the condenser and evaporator zone are estimated from the experimental results. The experimental results have been assessed and compared with existing correlations. Imura's and Kusuda's correlation for boiling showed in good agreement with experimental results within ${\pm}20$% in plain thermosyphon. The maximum heat transfer rate was obtained when the liquid fill ratio was about 25%. The high heat transfer coefficient was found between 25o and 30o of inclination angle for water and between 20o and 25o for methanol and ethanol. The relatively high rates of heat transfer have been achieved in the thermosyphon with internal micro grooves. The micro grooved thermosyphon having 60 grooves shows the best heat transfer coefficient in both condensation and boiling. The maximum enhancement (i.e. the ratio of the heat transfer coefficients of the micro grooved thermosyphon to plain thermosyphon) is 2.5 for condensation and 2.3 for boiling.

Experiments on R-22 condensation heat transfer in small diameter tubes (소구경 원관내의 R-22 응축열전달에 대한 실험)

  • 김내현;조진표;김정오;김만회;윤재호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.3
    • /
    • pp.271-281
    • /
    • 1998
  • In this study, condensation heat transfer experiments were conducted with two small diameter(ø7.5, ø4.0) tubes. Comparison with existing in-tube condensation heat transfer correlations indicated that the correlations overpredict the present data. For example, Akers correlation overpredicts the data upto 104%. The condensation heat transfer coefficient of the ø4.0 I.D. tube was smaller than that of the ø7.5 I.D tube; at the mass velocity of 300kg/$m^2$s, the difference was 12%. The pressure drop data of the small diameter tubes ware highly(two to six times) overpredicted by the Lockhart-Martinelli correlation. Subcooled forced convection heat transfer test confirmed that Gnielinski's single phase heat transfer correlation predicted the data reasonably well.

  • PDF

Condensation and evaporation heat transfer characteristics of HFC-134a in a horizontal smooth and a micro-finned tube (수평 평활관과 마이크로핀 관내에서 HFC-134a의 응축 및 증발열전달 특성)

  • Lee, Sang-Cheon;Park, Byeong-Deok;Han, Un-Hyeok;Lee, Jae-Hui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.5
    • /
    • pp.1725-1734
    • /
    • 1996
  • Experimental condensation and evaporation heat transfer coefficients were measured in a horizontal smooth tube and a horizontal micro-finned tube with HFC-134a. The test sections are straight, horizontal tubes with have a 9.52mm outside diameter and about 5000mm long. The micro-finned tube had 60 fins with a height of 0.12mm and a spiral angle of 25.deg.. The condensation test section was a double-pipe type with counter flow configuration. The evaporation test section employed an electic heating method. Enhancement factors which is defined as a ratio of the heat transfer coefficient for micro-finned tube to that for smooth tube, varied from 1.3 to 1.6(mass flux:110~190kg/m$^{2}$s) for condensation and 1.2 to 1.5 (mass flux:70~160kg/m$^{2}$s) for evaporation. The experimental data of condensation and evaporation heat transfer coefficients were compared to several empirical correlations. Based on these comparisons, modified correlations of the condensation and evaporation heat transfer coefficient for both smooth and micro-finned tubes were proposed.